Advertisement

Recovery of Nitrogen and Phosphorus Nutrition from Anaerobic Digestate by Natural Superabsorbent Fiber-Based Adsorbent and Reusing as an Environmentally Friendly Slow-Release Fertilizer for Horticultural Plants

  • Le Zhang
  • Kai-Chee LohEmail author
  • Suseeven Sarvanantharajah
  • Ye Shen
  • Yen Wah Tong
  • Chi-Hwa Wang
  • Yanjun Dai
Original Paper
  • 6 Downloads

Abstract

Purpose

To help minimize the negative impact of chemical fertilizers on the environment, recycle nitrogen and phosphorus nutrients of anaerobic digestate and reduce loss of nutrients via leaching, an eco-friendly slow-release fertilizer was prepared through recovery of nitrogen and phosphorus nutrition from digestate using superabsorbent fibers extracted from soybean curd residue as an adsorbent.

Methods

The preparation method was proposed, and the fiber composite-based adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscope (SEM) techniques.

Results

The successful incorporation of N and P into the fiber composite-based adsorbent via adsorption was confirmed by results of these analyses. The prepared fertilizer showed a relatively high N content (3.65 wt%) and a limited P content (0.14 wt%). Also, the swelling capacity as well as water retention capability of the obtained fiber composite-based adsorbent were evaluated. The release behavior of N and P from impregnated fiber composites was examined and was found to be partially in good accordance with the standard of the Committee of European Normalization, showing good slow-release and water-retention properties. Furthermore, in order to assess the fertilizer quality of the prepared materials, the effects of different fertilizers (commercially available fertilizer and prepared slow-release fertilizer) on tomato plant growth and soil microbial communities were investigated.

Conclusions

The obtained results demonstrated the potential of fiber composite-based slow-release fertilizer system for recycling N and P nutrition from digestate, improving the effectiveness of fertilizer as well as protecting the environment.

Graphic Abstract

Keywords

Resource recovery Bio-fertilizer Water absorbency Impregnation Soil microbial communities Pyrosequencing 

Notes

Acknowledgements

This research project was funded by the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Programme.

Supplementary material

12649_2019_915_MOESM1_ESM.pdf (289 kb)
Electronic supplementary material 1 (PDF 289 kb)

References

  1. 1.
    Cao, X., Mengyang, W., Rui, S., La, Z., Dan, C., Guangcheng, S., Xiangping, G., Weiguang, W., Shuhai, T.: Water footprint assessment for crop production based on field measurements: a case study of irrigated paddy rice in East China. Sci. Total Environ. 610, 84–93 (2018)Google Scholar
  2. 2.
    Rivera, X.C.S., Bacenetti, J., Fusi, A., Niero, M.: The influence of fertiliser and pesticide emissions model on life cycle assessment of agricultural products: the case of Danish and Italian barley. Sci. Total Environ. 592, 745–757 (2017)CrossRefGoogle Scholar
  3. 3.
    Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S.: Agricultural sustainability and intensive production practices. Nature 418(6898), 671 (2002)CrossRefGoogle Scholar
  4. 4.
    Chen, S., Yang, M., Ba, C., Yu, S., Jiang, Y., Zou, H., Zhang, Y.: Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Sci. Total Environ. 615, 431–437 (2018)CrossRefGoogle Scholar
  5. 5.
    Qiao, D., Liu, H., Yu, L., Bao, X., Simon, G.P., Petinakis, E., Chen, L.: Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 147, 146–154 (2016)CrossRefGoogle Scholar
  6. 6.
    Azeem, B., KuShaari, K., Man, Z.B., Basit, A., Thanh, T.H.: Review on materials & methods to produce controlled release coated urea fertilizer. J. Control Release. 181, 11–21 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., Liu, M.: Environmentally friendly fertilizers: a review of materials used and their effects on the environment. Sci. Total Environ. 613, 829–839 (2018)CrossRefGoogle Scholar
  8. 8.
    De Vries, W., Kros, J., Kroeze, C., Seitzinger, S.P.: Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5(3–4), 392–402 (2013)CrossRefGoogle Scholar
  9. 9.
    Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., Tabar, A.R.: Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater. Sci. Eng. C 90, 333–340 (2018)CrossRefGoogle Scholar
  10. 10.
    França, D., Medina, Â.F., Messa, L.L., Souza, C.F., Faez, R.: Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable-controlled release materials. Carbohydr. Polym. 196, 47–55 (2018).  https://doi.org/10.1016/j.carbpol.2018.05.014 CrossRefGoogle Scholar
  11. 11.
    dos Santos, B.R., Bacalhau, F.B., dos Santos Pereira, T., Souza, C.F., Faez, R.: Chitosan-montmorillonite microspheres: a sustainable fertilizer delivery system. Carbohydr. Polym. 127, 340–346 (2015)CrossRefGoogle Scholar
  12. 12.
    Kenawy, E.R., Azaam, M.M., El-nshar, E.M.: Preparation of carboxymethyl cellulose-g-poly (acrylamide)/montmorillonite superabsorbent composite as a slow-release urea fertilizer. Polym. Adv. Technol. 29(7), 2072–2079 (2018)CrossRefGoogle Scholar
  13. 13.
    Khan, M.A., Mingzhi, W., Lim, B.-K., Lee, J.-Y.: Utilization of waste paper for an environmentally friendly slow-release fertilizer. J. Wood. Sci. 54(2), 158–161 (2008)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Lü, S., Gao, C., Feng, C., Xu, X., Bai, X., Gao, N., Yang, J., Liu, M., Wu, L.: Recovery of ammonium and phosphate from wastewater by wheat straw-based amphoteric adsorbent and reusing as a multifunctional slow-release compound fertilizer. ACS Sustain. Chem. Eng. 4, 2068–2079 (2016)CrossRefGoogle Scholar
  15. 15.
    González, M., Cea, M., Medina, J., González, A., Diez, M., Cartes, P., Monreal, C., Navia, R.: Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci. Total Environ. 505, 446–453 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, S., Chen, Y., Li, K., Lei, Z., Zhang, Z.: Characterization of physicochemical properties of fermented soybean curd residue by Morchella esculenta. Int. Biodeterior. Biodegradation 109, 113–118 (2016)CrossRefGoogle Scholar
  17. 17.
    Li, S., Zhu, D., Li, K., Yang, Y., Lei, Z., Zhang, Z.: Soybean curd residue: composition, utilization, and related limiting factors. ISRN Ind. Eng. (2013).  https://doi.org/10.1155/2013/423590 CrossRefGoogle Scholar
  18. 18.
    Li, B., Qiao, M., Lu, F.: Composition, nutrition, and utilization of okara (soybean residue). Food Rev. Int. 28(3), 231–252 (2012)CrossRefGoogle Scholar
  19. 19.
    O’Toole, D.K.: Characteristics and use of okara, the soybean residue from soy milk production a review. J. Agric. Food Chem. 47(2), 363–371 (1999)CrossRefGoogle Scholar
  20. 20.
    Gao, J., Liu, J., Peng, H., Wang, Y., Cheng, S., Lei, Z.: Preparation of a low-cost and eco-friendly superabsorbent composite based on wheat bran and laterite for potential application in Chinese herbal medicine growth. R. Soc. Open. Sci. 5(5), 180007 (2018)CrossRefGoogle Scholar
  21. 21.
    Ma, J., Li, X., Bao, Y.: Advances in cellulose-based superabsorbent hydrogels. RSC Adv. 5(73), 59745–59757 (2015)CrossRefGoogle Scholar
  22. 22.
    Monfet, E., Aubry, G., Ramirez, A.A.: Nutrient removal and recovery from digestate: a review of the technology. Biofuels 9(2), 247–262 (2018)CrossRefGoogle Scholar
  23. 23.
    Gienau, T., Brüß, U., Kraume, M., Rosenberger, S.: Nutrient recovery from biogas digestate by optimised membrane treatment. Waste Biomass Valorization 9(12), 2337–2347 (2018)CrossRefGoogle Scholar
  24. 24.
    Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P.A., Tack, F.M., Meers, E.: Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valorization 8(1), 21–40 (2017)CrossRefGoogle Scholar
  25. 25.
    Lukehurst, C.T., Frost, P., Al Seadi, T.: Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy 2010, 1–36 (2010)Google Scholar
  26. 26.
    Koszel, M., Lorencowicz, E.: Agricultural use of biogas digestate as a replacement fertilizers. Agric. Agric. Sci. 7, 119–124 (2015)Google Scholar
  27. 27.
    Hong, S.M., Park, J.K., Teeradej, N., Lee, Y.O., Cho, Y.K., Park, C.H.: Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance. Water Environ. Res. 78(1), 76–83 (2006)CrossRefGoogle Scholar
  28. 28.
    Atelge, M.R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D.D., Chang, S.W., Atabani, A.E., Al-Muhtaseb, A.H., Unalan, S.: Biogas production from organic waste: recent progress and perspectives. Waste Biomass Valorization (2018).  https://doi.org/10.1007/s12649-018-00546-0 CrossRefGoogle Scholar
  29. 29.
    Wu, L., Liu, M., Liang, R.: Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour. Technol. 99(3), 547–554 (2008)CrossRefGoogle Scholar
  30. 30.
    Trenkel, M.E.: Controlled-Release and Stabilized Fertilizers in Agriculture, vol. 11. International Fertilizer Industry Association, Paris (1997)Google Scholar
  31. 31.
    Zhang, L., Zhang, J., Loh, K.-C.: Activated carbon enhanced anaerobic digestion of food waste–Laboratory-scale and Pilot-scale operation. Waste Manag. 75, 270–279 (2018)CrossRefGoogle Scholar
  32. 32.
    Van Soest, P.V., Robertson, J., Lewis, B.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991)CrossRefGoogle Scholar
  33. 33.
    Zhang, L., Loh, K.-C., Zhang, J.: Food waste enhanced anaerobic digestion of biologically pretreated yard waste: analysis of cellulose crystallinity and microbial communities. Waste Manag. 79, 109–119 (2018).  https://doi.org/10.1016/j.wasman.2018.07.036 CrossRefGoogle Scholar
  34. 34.
    Zhang, J., Mao, L., Zhang, L., Loh, K.-C., Dai, Y., Tong, Y.W.: Metagenomic insight into the microbial networks and metabolic mechanism in anaerobic digesters for food waste by incorporating activated carbon. Sci. Rep. 7(1), 11293 (2017).  https://doi.org/10.1038/s41598-017-11826-5 CrossRefGoogle Scholar
  35. 35.
    Zhang, J., Zhang, L., Loh, K.-C., Dai, Y., Tong, Y.W.: Enhanced anaerobic digestion of food waste by adding activated carbon: fate of bacterial pathogens and antibiotic resistance genes. Biochem. Eng. Sci. 128, 19–25 (2017)CrossRefGoogle Scholar
  36. 36.
    Bürck, J., Aras, O., Bertinetti, L., Ilhan, C.A., Ermeydan, M.A., Schneider, R., Ulrich, A.S., Kazanci, M.: Observation of triple helix motif on electrospun collagen nanofibers and its effect on the physical and structural properties. J. Mol. Struct. 1151, 73–80 (2018)CrossRefGoogle Scholar
  37. 37.
    Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., Tabar, A.R.: Water retention and slow release studies of a salep-based hydrogel nanocomposite reinforced with montmorillonite clay. New J. Chem. 42(4), 2758–2766 (2018)CrossRefGoogle Scholar
  38. 38.
    Ju, X., Bowden, M., Brown, E.E., Zhang, X.: An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr. Polym. 123, 476–481 (2015)CrossRefGoogle Scholar
  39. 39.
    Zhang, J., Chen, M., Sui, Q., Wang, R., Tong, J., Wei, Y.: Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour. Technol. 217, 28–36 (2016)CrossRefGoogle Scholar
  40. 40.
    Tong, J., Liu, J., Zheng, X., Zhang, J., Ni, X., Chen, M., Wei, Y.: Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. Bioresour. Technol. 217, 37–43 (2016)CrossRefGoogle Scholar
  41. 41.
    Smith, I.: Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16(3), 463–496 (2003)CrossRefGoogle Scholar
  42. 42.
    Helgason, E., Økstad, O.A., Caugant, D.A., Johansen, H.A., Fouet, A., Mock, M.L., Hegna, I., Kolstø, A.-B.: Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66(6), 2627–2630 (2000)CrossRefGoogle Scholar
  43. 43.
    Zeng, J., Liu, X., Song, L., Lin, X., Zhang, H., Shen, C., Chu, H.: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016)CrossRefGoogle Scholar
  44. 44.
    Luo, G., Rensing, C., Chen, H., Liu, M., Wang, M., Guo, S., Ling, N., Shen, Q.: Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management. Funct. Ecol. 32(4), 1103–1116 (2018)CrossRefGoogle Scholar
  45. 45.
    Francioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F., Reitz, T.: Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016)CrossRefGoogle Scholar
  46. 46.
    Janssen, P.H.: Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72(3), 1719–1728 (2006)CrossRefGoogle Scholar
  47. 47.
    Joa, J.H., Weon, H.Y., Hyun, H.N., Jeun, Y.C., Koh, S.W.: Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash. J. Microbiol. 52(12), 995–1001 (2014)CrossRefGoogle Scholar
  48. 48.
    Youssef, N.H., Elshahed, M.S.: Diversity rankings among bacterial lineages in soil. ISME J. 3(3), 305 (2009)CrossRefGoogle Scholar
  49. 49.
    Lee, J., Han, G., Shin, S.G., Koo, T., Cho, K., Kim, W., Hwang, S.: Seasonal monitoring of bacteria and archaea in a full-scale thermophilic anaerobic digester treating food waste-recycling wastewater: correlations between microbial community characteristics and process variables. Chem. Eng. Sci. 300, 291–299 (2016)CrossRefGoogle Scholar
  50. 50.
    Harbison, A.B., Price, L.E., Flythe, M.D., Bräuer, S.L.: Micropepsis pineolensis gen. nov., sp. nov., a mildly acidophilic alphaproteobacterium isolated from a poor fen, and proposal of Micropepsaceae fam. nov. within Micropepsales ord. nov. Int. J. Syst. Evol. Microbiol. 67(4), 839–844 (2017)CrossRefGoogle Scholar
  51. 51.
    Kostka, J.E., Green, S.J., Rishishwar, L., Prakash, O., Katz, L.S., Mariño-Ramírez, L., Jordan, I.K., Munk, C., Ivanova, N., Mikhailova, N.: Genome sequences for six Rhodanobacter strains, isolated from soils and the terrestrial subsurface, with variable denitrification capabilities. Int. Am. Soc. Microbiol. 194, 4461–4462 (2012)Google Scholar
  52. 52.
    Prakash, O., Green, S.J., Jasrotia, P., Overholt, W.A., Canion, A., Watson, D.B., Brooks, S.C., Kostka, J.E.: Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. Int. J. Syst. Evol. Microbiol. 62(10), 2457–2462 (2012)CrossRefGoogle Scholar
  53. 53.
    Mohr, K.I., Garcia, R.O., Gerth, K., Irschik, H., Müller, R.: Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov. Int. J. Syst. Evol. Microbiol. 62(5), 1191–1198 (2012)CrossRefGoogle Scholar
  54. 54.
    Sharma, G., Khatri, I., Subramanian, S.: Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol. Evol. 8(8), 2520–2529 (2016)CrossRefGoogle Scholar
  55. 55.
    Asaf, S., Khan, M.A., Khan, A.L., Waqas, M., Shahzad, R., Kim, A.-Y., Kang, S.-M., Lee, I.-J.: Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J. Plant Interact. 12(1), 31–38 (2017)CrossRefGoogle Scholar
  56. 56.
    Chen, B., Zhang, Y., Rafiq, M.T., Khan, K.Y., Pan, F., Yang, X., Feng, Y.: Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117, 367–373 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.NUS Environmental Research InstituteNational University of SingaporeSingaporeSingapore
  2. 2.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Department of Biochemical EngineeringUniversity College LondonLondonUK
  4. 4.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations