Advertisement

Amino Acid Enriched Proteinous Wastes: Recovery and Reuse in Leather Making

  • Ranjithkumar Ammasi
  • John Sundar Victor
  • Rose Chellan
  • Muralidharan ChellappaEmail author
Original Paper
  • 27 Downloads

Abstract

Environmental constraints have become the key issue for sustenance of industries worldwide. In leather industry, solid wastes create major problem to the environment, among which animal fleshing constitute a major portion. The main objective of this study is to evolve a simple, eco-benign method for the utilization of solid wastes to produce value added product. The product was developed by hydrolysis using alkaline protease (a novel Bacillus crolab 5468), which can be potentially used for surface upgradation of leather. Molecular mass of the polypeptides was found to be 9 kDa at 30 min and 6 kDa at 60 min of hydrolysis by MALDI-TOF. Furthermore, the polypeptides treated leather exhibited uniform grain pattern, better filling and strength properties compared to untreated leather. High value-added product presents a strong case for sustainable leather production as it adds both economic and environmental benefits to leather making.

Graphic Abstract

Keywords

Limed fleshing wastes Enzymatic hydrolysis Polypeptides Leather making Surface modifier 

Notes

Acknowledgements

The authors gratefully acknowledge the Council of Scientific and Industrial Research. (CSIR), New Delhi for funding this research and are thankful to the Director, CSIR—Central Leather Research Institute for his support. The authors also thank UGC-RGNF-1274.

References

  1. 1.
    Guanyu, Z., Lixiang, Z., Shimei, W.: An acid—tolerant heterotrophic microorganism role in improving tannery sludge bioleaching conducted in successive multi-batch reaction systems. Environ. Sci. Technol. 43, 4151–4156 (2009)CrossRefGoogle Scholar
  2. 2.
    Kumar, A.G., Swarnalatha, S., Sairam, B., Sekaran, G.: Production of alkaline protease by Pseudomonas aeruginosa using proteinaceous solid waste generated from leather manufacturing industries. Bioresour. Technol. 99, 1939–1944 (2008)CrossRefGoogle Scholar
  3. 3.
    Caroline, B.A., Franciela, S.M., Costab, M.G.: Biogas production for anaerobic co-digestion of tannery solid wastes under presence and absence of the tanning agent. Resour. Conserv. Recycl. 130, 51–59 (2018)CrossRefGoogle Scholar
  4. 4.
    Sundar, V.J., Raghava Rao, J., Muralidharan, C., Mandal, A.B.: Recovery and utilization of chromium-tanned proteinous wastes of leather making: a review. Crit. Rev. Environ. Sci. Technol. 41, 2048–2075 (2011)CrossRefGoogle Scholar
  5. 5.
    Taylor, M.M., Cabeza, L.F., Dimaio, G.L.: Processing of leather waste: pilot scale studies on chrome shavings. Part I. Isolation and characterization of protein products and separation of chrome cake. J. Am. Leather Chem. Assoc. 93, 61–82 (1998)Google Scholar
  6. 6.
    Sundar, V.J., Ramesh, R., Rao, P.S., Saravanan, P., Sridharnath, B., Muralidharan, C.: Water management in leather industry. J. Sci. Ind. Res. 60, 443–450 (2001)Google Scholar
  7. 7.
    Zieljko, B., Valerije, V.: Thermal and enzymatic recovering of proteins from untanned leather waste. Waste Manag. 21, 79–84 (2001)CrossRefGoogle Scholar
  8. 8.
    Maria, J.F., Manuel, F.A., Sıilvia, C.P., Joana, R.G., Jose, L.R.: Alkaline hydrolysis of chromium tanned leather scrap fibers and anaerobic biodegradation of the products. Waste Biomass Valor. 5, 551–562 (2014)CrossRefGoogle Scholar
  9. 9.
    Cecilia, A., Barbara, P., Tullia, T., Chiara, B., Giovanni, S., Peter, A.W., Arnaldo, D., Stefano, S.: Degradation of collagen increases nitrogen solubilisation during enzymatic hydrolysis of fleshing meat. Waste Biomass Valor. 9, 1113–1119 (2018)CrossRefGoogle Scholar
  10. 10.
    Vasudevan, N., Ravindran, A.D.: Biotechnological process for the treatment of fleshing from tannery industries for methane generation. Curr. Sci. 93, 1492–1494 (2007)Google Scholar
  11. 11.
    Sumathi, C., Sekaran, G.: Nutritional evaluation of animal fleshing as a fish meal replacer in Labeo rohita. J. Aqua Feed Sci. Nutr. 2(2–4), 6–10 (2010)Google Scholar
  12. 12.
    Shanmugam, P., Horan, N.J.: Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour. Technol. 100, 4117–4120 (2009)CrossRefGoogle Scholar
  13. 13.
    Ravindran, B., Sekaran, G.: Bacterial composting of animal fleshing generated from tannery industries. Waste Manag. 30, 2622–2630 (2010)CrossRefGoogle Scholar
  14. 14.
    Langmaier, F., Stibora, M., Mladek, M., Kolomaznik, K.: Gel-sol transitions of chrome tanned leather waste hydrolysate. J. Am. Leather Chem. Assoc. 85, 100–105 (2001)Google Scholar
  15. 15.
    Langmaier, F., Mokrejs, P., Kolomaznik, K., Mladek, M.: Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag. 28, 549–556 (2008)CrossRefGoogle Scholar
  16. 16.
    Castiello, D., Puccini, M., Salvadori, M., Vitolo, S.: Reutilization of skin fleshing-derived collagen hydrolyzate in the re-tanning dyeing/fat liquoring phases. IULTCS II Euro Congress Istanbul, pp. 1–16 (2006)Google Scholar
  17. 17.
    Ranjithkumar, A., Durga, J., Ramesh, R., Rose, C., Muralidharan, C.: Cleaner processing: a sulphide—free approach for depilation of skins. Environ. Sci. Pollut. Res. 24, 180–188 (2017)CrossRefGoogle Scholar
  18. 18.
    American Public Health Association, APHA: Standard methods for the examination of water and wastewater, 16th edn. APHA, Washington, DC (1985)Google Scholar
  19. 19.
    Neuman, R.E., Logan, M.A.: The determination of hydroxyproline. J. Biol. Chem. 184, 299–306 (1950)Google Scholar
  20. 20.
    Association of Official Analytical Chemists, AOAC: Official methods of analysis, 15th edn. Arlington, AOAC (1990)Google Scholar
  21. 21.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with folin-phenol reagent. J. Biol. Chem. 193, 265–273 (1951)Google Scholar
  22. 22.
    Ganesh Kumar, A., Nagesh, N., Prabhakar, T.G., Sekaran, G.: Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries. Bioresour. Technol. 99, 2364–2372 (2008)CrossRefGoogle Scholar
  23. 23.
    Yamini, S.H., Sreeram, K.J., Nair, B.U.: Aggregation of mucin by chromium (III) complexes as revealed by electro kinetic and rheological studies: influence on the tryptic and o-glycanase digestion of mucin. JBSD 21, 671 (2004)Google Scholar
  24. 24.
    Corrales, T., Catalina, F., Peinado, C., Allen, N., Fontan, E.: Photo-oxidative and thermal degradation of polyethylene: interrelationship by chemiluminescence, thermal gravimetric analysis and FTIR data. J. Photochem. Photobiol. A 147, 213–219 (2002)CrossRefGoogle Scholar
  25. 25.
    Kronick, P.L., Buechler, P.R.: Effects of bleaching and tanning on collagen stability, studied by differential scanning calorimeter. J. Am. Leather Chem. Assoc. 81, 213–218 (1986)Google Scholar
  26. 26.
    Mclaughlin, G.D., Theis, Z.R.: The chemistry of leather manufacture, vol. 8, pp. 158–160. Reinhold publishing, New York (1945)Google Scholar
  27. 27.
    IUC 8: Determination of chromic oxide content. J. Soc. Leather Technol. Chem. 82, 200–208 (1998)Google Scholar
  28. 28.
    IUP 2: Sampling. J. Soc. Leather Technol. Chem. 84, 303–309 (2000)Google Scholar
  29. 29.
    IUP 16: Determination of shrinkage temperature. J. Soc. Leather Technol. Chem. 84, 359 (2000)Google Scholar
  30. 30.
    Luo, M.R., Rigg, B.: The exploitation of colour physics technology in the textile industry—a study in technology transfer. J. Soc. Dyers Chem. 83, 103 (1987)Google Scholar
  31. 31.
    IUP 18: Measurements of tear load—double edge tear. J. Soc. Leather Technol. Chem. 84, 327–329 (2000)Google Scholar
  32. 32.
    Ramasami, T.: Approach towards a unified theory for tanning: Wilsons dream. J. Am. Leather Chem. Assoc. 96, 290–304 (2001)Google Scholar
  33. 33.
    Zhang, F., Wang, A., Li, Z., He, S., Shao, L.: Preparation and characterisation of collagen from freshwater fish scales. Food Nutr. Sci. 2, 818–823 (2011)Google Scholar
  34. 34.
    Doyle, B.B., Bendit, E.G., Blout, E.R.: Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers 14(5), 937–957 (1975)CrossRefGoogle Scholar
  35. 35.
    Payne, K.J., Veis, A.: Fourier-transform infrared spectroscopy of collagen and gelatin solutions: de-convolution of the Amide I band for conformational studies. Biopolymers 27, 1749–1760 (1998)CrossRefGoogle Scholar
  36. 36.
    Elliott, A., Ambrose, E.J.: Structure of synthetic polypeptides. Nature 165, 921–922 (1985)CrossRefGoogle Scholar
  37. 37.
    Krimm, S., Bandekar, J.: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38, 181–364 (1986)CrossRefGoogle Scholar
  38. 38.
    Barreto, P.L.M., Pires, A.T.N., Soldi, V.: Thermal degradation of edible films based on milk proteins and gelain in inert atmosphere. Polym. Degrad. Stab. 79, 147–152 (2003)CrossRefGoogle Scholar
  39. 39.
    Liu, R., Chen, Y., Fan, H.: Design, characterization, dyeing properties, and application of acid—dyeable polyurethane in the manufacture of microfiber synthetic leather. Fibers Polym. 16, 1970–1980 (2015)CrossRefGoogle Scholar
  40. 40.
    Zhang, J., Hu, C.P.: Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyper branched polyester segments. Eur. Polym. J. 44, 3708–3714 (2008)CrossRefGoogle Scholar
  41. 41.
    Yulu, W., Liqiang, J.: Preparation and characterization of self-colored waterborne polyurethane and its application in eco-friendly manufacturing of microfiber synthetic leather base. Polymers. 10, 289 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ranjithkumar Ammasi
    • 1
    • 2
  • John Sundar Victor
    • 3
  • Rose Chellan
    • 1
  • Muralidharan Chellappa
    • 3
    Email author
  1. 1.Biochemistry & Biotechnology DivisionCSIR - Central Leather Research InstituteChennaiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
  3. 3.Leather Processing DivisionCSIR - Central Leather Research InstituteChennaiIndia

Personalised recommendations