Advertisement

Challenges of Enzymes, Conidia and 6-Pentyl-alpha-pyrone Production from Solid-State-Fermentation of Agroindustrial Wastes Using Experimental Design and T. asperellum Strains

  • Rayhane HamrouniEmail author
  • Magalie Claeys-Bruno
  • Josiane Molinet
  • Ahmed Masmoudi
  • Sevastianos Roussos
  • Nathalie Dupuy
Original Paper
  • 5 Downloads

Abstract

In a context of growing awareness regarding environmental protection, biomass valorization is gaining a lot of attention. The byproducts volumes generated by agro-industry are massive and, left to decay, can constitute environmental pollutions. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers advantages to produce value-added products such as antibiotics, pigments, aromas and enzymes of industrial interest like cellulases, chitinases, amylases, etc. Several studies have already demonstrated the advantages of SSF for the production of fungal metabolites, yet the optimal conditions for metabolites production strongly depend on the culture conditions and microbial strain utilized. Therefore, the aim of this study was to improve the conidia, lytic enzymes (cellulase, lipase and amylase), and antifungal—6-pentyl-alpha-pyrones (6-PP)—production by three Trichoderma asperellum strains cultivated using SSF. Designs of experiments have been achieved in order to identify influential factors on 6-PP, conidia and enzymes (cellulase, lipase, and amylase) production by the fungal culture. A significantly enzymes activities, conidiation and 6-PP production were observed on mix of substrates: vine shoots, potatoes flour, jatropha, olive pomace and olive oil on high carbon/nitrogen ratio 37 which was used by T. asperellum TV104 as a source of nutrients and also as a matrix.

Graphic Abstract

Keywords

Solid-state-fermentation Trichoderma asperellum Optimization Agroindustrial wastes Experimental design 

Notes

Acknowledgements

Authors thank EURASMUS+ mobility for the financial support during the stay in France. R.H. also thank Tunisian Republic “Tunis El Manar University”, the LR Biotechnology and Bio-Geo Resources Valorization (LR11ES31), the Higher Institute for Biotechnology “University of Manouba”, the Institut Méditerranén de Biodiversité et d’Ecologie Marine et Continentale (IMBE), and the Planning Direction Office of Aix Marseille University for the support and technical facilities.

References

  1. 1.
    Couto, S.R., Sanromán, M.A.: Application of solid-state fermentation to food industry. J. Food Eng. 76, 291–302 (2006)CrossRefGoogle Scholar
  2. 2.
    Nigam, P.S.: Production of bioactive secondary metabolites. In: Biotechnology for Agro-industrial Residues Utilisation. Springer, Dordrecht (2009)Google Scholar
  3. 3.
    Mascarin, G.M., Jaronski, S.T.: The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 32(11), 177 (2016)CrossRefGoogle Scholar
  4. 4.
    Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem. Eng. J. 81, 146–161 (2013)CrossRefGoogle Scholar
  5. 5.
    Mateos Diaz, J.C., Rodriguez, J.A., Roussos, S., Cordova, J., Abousalham, A., Carriere, F., Baratti, J.: Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb. Technol. 39, 1042–1050 (2006)CrossRefGoogle Scholar
  6. 6.
    O’Callaghan, M.: Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl. Microbiol. Biotechnol. 100, 5729–5746 (2016)CrossRefGoogle Scholar
  7. 7.
    De la Cruz-Quiroz, R., Roussos, S., Hernandez-Castillo, D., Rodríguez-Herrera, R., López, L.I.L., Castillo, F., Aguilar, C.N.: Chapter 03: solid-state fermentation in a bag bioreactor: effect of corn cob mixed with phytopathogen biomass on spore and cellulase production by Trichoderma asperellum. In: Jozala, A.F. (ed.) Fermentation Processes. InTech, Rijeka (2017)Google Scholar
  8. 8.
    Carboué, Q., Perraud-Gaime, I., Tranier, M.S., Roussos, S.: Production of microbial enzymes by solid state fermentation for food applications. In: Ray, R.C., Rosell, C.M. (eds.) Microbial Enzyme Technology for Food Applications, pp. 437–451. CRC Press, Boca Raton (2017)Google Scholar
  9. 9.
    De la Cruz Quiroz, R., Roussos, S., Hernández, D., Rodríguez, R., Castillo, F., Aguilar, C.N.: Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model. Crit. Rev. Biotechnol. 35, 326–333 (2015)CrossRefGoogle Scholar
  10. 10.
    Shi, Y., Xu, X., Zhu, Y.: Optimization of Verticillium lecanii spore production in solid-state fermentation on sugarcane bagasse. Appl. Microbiol. Biotechnol. 82, 921–927 (2009)CrossRefGoogle Scholar
  11. 11.
    Fadel, H.H.M., Gomaa Mahmoud, M., Selim Asker, M.M., Nazeh Lotfy, S.: Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse. Electron. J. Biotechnol. 18, 5–9 (2015)CrossRefGoogle Scholar
  12. 12.
    Yong, F.M., Wong, H.A., Lim, G.: Effect of nitrogen source on aroma production by Trichoderma viride. Appl. Microbiol. Biotechnol. 22, 146–147 (1985)CrossRefGoogle Scholar
  13. 13.
    Carboué, Q., Claeys-Bruno, M., Bombarda, I., Sergent, M., Jolain, J., Roussos, S.: Experimental design and solid state fermentation: a holistic approach to improve cultural medium for the production of fungal secondary metabolites. Chemom. Intell. Lab. Syst. 176, 101–107 (2018)CrossRefGoogle Scholar
  14. 14.
    De la Cruz-Quiroz, R., Robledo-Padilla, F., Aguilar, C.N., Roussos, S.: Forced aeration influence on the production of spores by Trichoderma strains. Waste Biomass Valoriz. 8, 2263–2270 (2017)CrossRefGoogle Scholar
  15. 15.
    Boubaker, F., Cheikh Ridha, B.: Anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a tubular digester at mesophilic temperature. Bioresour. Technol. 98, 769–774 (2007)CrossRefGoogle Scholar
  16. 16.
    Rébufa, C., Pany, I., Bombarda, I.: NIR spectroscopy for the quality control of Moringa oleifera (Lam.) leaf powders: prediction of minerals, protein and moisture contents. Food Chem. 261, 311–321 (2018)CrossRefGoogle Scholar
  17. 17.
    Rueda, A., Seiquer, I., Olalla, M., Gimérez, R., Lara, L., Cabrera-Vique, C.: Characterization of fatty acid profile of argan oil and other edible vegetable oils by gas chromatography. J. Chem. 8, 843–908 (2014)Google Scholar
  18. 18.
    Jingura, R.M., Kamusoko, R.: Experiences with Jatropha cultivation in sub-Saharan Africa: lessons for the next phase of development. Afr. J. Sci. Technol. Innov. Dev. 6, 333–337 (2014)CrossRefGoogle Scholar
  19. 19.
    Pandey, A., Soccol, C.R., Mitchell, D.: New developments in solid state fermentation: I-bioprocesses and products. Process Biochem. 35, 1153–1169 (2000)CrossRefGoogle Scholar
  20. 20.
    De Souza Ramos, A., Fiaux, S.B., Ferreira Leite, S.G.: Production of 6-pentyl-α-pyrone by Trichoderma harzianum in solid-state fermentation. Braz. J. Microbiol. 39, 712–717 (2008)CrossRefGoogle Scholar
  21. 21.
    Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for Experimenters, pp. 203–207. Wiley, New York (1978)zbMATHGoogle Scholar
  22. 22.
    Droesbeke, J.J., Fine, J., Saporta, G.: Plans d’expériences, Applications à l’entreprise. Technip, Paris (1997)zbMATHGoogle Scholar
  23. 23.
    Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2001)Google Scholar
  24. 24.
    Cela, R., Phan-Tan-Luu, R., Claeys-Bruno, M.: Screening strategies. In: Tauler, R., Walczak, B., Brown, S.D. (eds.) Comprehensive Chemometrics, pp. 251–300. Elsevier, Oxford (2009)CrossRefGoogle Scholar
  25. 25.
    Plackett, R.L., Burman, J.P.: Design of optimal multifactorial experiments. Biometrika 23, 305–325 (1946)zbMATHCrossRefGoogle Scholar
  26. 26.
    Hamrouni, R., Molinet, J., Miché, L., Carboué, Q., Dupuy, N., Masmoudi, A., Roussos S.: Production of coconut aroma in solid-state cultivation: screening and identification of Trichoderma strains for 6-pentyl-alpha-pyrone and conidia production. J. Chem. ID 8562384 (2019)Google Scholar
  27. 27.
    Roussos, S., Olmos, A., Raimbault, M., Saucedo-Castañeda, G., Lonsane, B.K.: Strategies for large scale inoculum development for solid state fermentation system: conidiospores of Trichoderma harzianum. Biotechnol. Tech. 5, 415–420 (1991)CrossRefGoogle Scholar
  28. 28.
    Singh, S., Singh, S., Bali, V., Sharma, L., Mangla, J.: Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry. Biomed. Res. Int. 10, 1155–2158 (2014)Google Scholar
  29. 29.
    Sarhy-Bagnon, V., Lozano, P., Saucedo-Castañeda, G., Roussos, S.: Production of 6-pentyl-alpha-pyrone by Trichoderma harzianum liquid and solid state cultures. Process Biochem. 36, 103–109 (2000)CrossRefGoogle Scholar
  30. 30.
    Demir, H., Tarı, C.: Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Ind. Crops Prod. 54, 302–309 (2014)CrossRefGoogle Scholar
  31. 31.
    Soccol, C.R., Scopel Ferreira da Costa, E., Letti, L.A.J., Karp, S.G., Woiciechowski, A.L., de Souza Vandenberghe, L.P.: Recent developments and innovations in solid state fermentation. Microbiol. Res. J. 1, 52–71 (2017)Google Scholar
  32. 32.
    El Achaby, M., El Miri, N., Hannache, H., Gmouh, S., Ben Youcef, H., Aboulkas, A.: Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. Int. J. Biol. Macromol. 117, 592–600 (2018)CrossRefGoogle Scholar
  33. 33.
    Sharma, A., Tewari, R., Rana, S.S., Soni, R., Soni, S.K.: Cellulases: classification, methods of determination and industrial applications. Appl. Biochem. Biotechnol. 179, 1346–1380 (2016)CrossRefGoogle Scholar
  34. 34.
    Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra Gonzalez, G.: Advances in Solid State Fermentation, p. 631. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  35. 35.
    Stoykov, Y.M., Pavlov, A.I., Krastanov, A.I.: Chitinase biotechnology: production, purification, and application. Eng. Life Sci. 15, 30–38 (2015)CrossRefGoogle Scholar
  36. 36.
    Maurya, D.P., Singh, D., Pratap, D., Maurya, J.P.: Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J. Environ. Biol. 33, 5–8 (2012)Google Scholar
  37. 37.
    Pham, T.A., Kim, J.J., Kim, K.: Optimization of solid-state fermentation for improved conidia production of Beauveria bassiana as a mycoinsecticide. Mycobiology 38, 129–137 (2010)CrossRefGoogle Scholar
  38. 38.
    Sadaf, A., Khare, S.K.: Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosaccharide synthesis. Bioresour. Technol. 153, 126–130 (2014)CrossRefGoogle Scholar
  39. 39.
    Galindo, E., Flores, C., Larralde-Corona, P., Corkidi-Blanco, G., Rocha-Valadez, J.A., Serrano-Carreon, L.: Production of 6-pentyl-alpha-pyrone by Trichoderma harzianum cultured in unbaffled and baffled shake flasks. Biochem. Eng. J. 18, 1–8 (2004)CrossRefGoogle Scholar
  40. 40.
    Oda, S., Isshiki, K., Ohashi, S.: Production of 6-pentyl-a-pyrone with T. atroviride and its mutant a novel extractive liquid-surface immobilization (EXT-LSI) system. Process Biochem. 44, 625–630 (2009)CrossRefGoogle Scholar
  41. 41.
    Rocha-Valadez, A.J., Estrada, M., Galindo, E., Serrano-Carreon, L.: From shake flasks to stirred fermentors: scale-up of an extractive fermentation process for 6-pentyl-a-pyrone production by Trichoderma harzianum using volumetric power input. Process Biochem. 41, 1347–1352 (2016)CrossRefGoogle Scholar
  42. 42.
    Onilude, A.A., Adebayo-Tayo, B.C., Odeniyi, A.O., Banjo, D., Garuba, E.O.: Comparative mycelial and spore yield by Trichoderma viride in batch and fed-batch cultures. Ann. Microbiol. 63, 547–553 (2013)CrossRefGoogle Scholar
  43. 43.
    Viniegra-González, G., Guevara-Gonzalez, R., Torres-Pacheco, I.: New horizons for the production of industrial enzymes by solid-state fermentation. In: Guevara-Gonzalez, R., Torres-Pacheco, I. (eds.) Biosystems Engineering: Biofactories for Food Production in the Century XXI, pp. 319–340. Springer, New York (2014)CrossRefGoogle Scholar
  44. 44.
    Chen, L., Yang, X., Raza, W., Luo, J., Zhang, F., Shen, Q.: Solid state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresour. Technol. 102, 3900–3910 (2011)CrossRefGoogle Scholar
  45. 45.
    Charrouf, Z., Guillaume, D.: Ethnoeconomical, ethnomedical, and phytochemical study of Argania spinosa (L.) Skeels. J. Ethnopharmacol. 67, 7–14 (2011)CrossRefGoogle Scholar
  46. 46.
    Ollivier, D., Pinatel, C., Ollivier, V., Artaud, J.: Creation of a database of the fatty acid and triacylglycerol composition of virgin olive oils produced from 34 French varieties, eight French designations of origin and two foreign varieties grown in France (Part I). OLIVÆ 119, 35–47 (2014)Google Scholar
  47. 47.
    Medouni-Haroune, L., Zaidi, F., Medouni-Adrar, S., Kecha, M.: Olive pomace: from an olive mill waste to a resource, an overview of the new treatments. J. Crit. Rev. 5, 1–6 (2018)CrossRefGoogle Scholar
  48. 48.
    Amsallem, I., Tréboux, M.: Jatropha cake: perspectives and constraints for valorization. Jatroref (2014). www.jatroref.org
  49. 49.
    Windépagnagdé Yaméogo, C., Daba Bengaly, M., Savadogo, A., Augustin Nikiema, P., Traore, S.A.: Determination of chemical composition and nutritional values of Moringa oleifera leaves. Pak. J. Nutr. 10, 264–268 (2011)CrossRefGoogle Scholar
  50. 50.
    Sabry, S.A.: Protein-enrichment of wheat bran using Aspergillus terreus. Microbiologia 9, 125–133 (1993)Google Scholar
  51. 51.
    Avula, R.Y., Singh, R.K.: Functional Properties of Potato Flour and Its Role in Product Development: A Review. Food, Special Issue. Global Science Books, pp. 105–112 (2009)Google Scholar
  52. 52.
    Molina-Alcaide, E., Moumen, A., Martın-Garcia, A.I.: By-products from viticulture and the wine industry: potential as sources of nutrients for ruminants. J. Sci. Food Agric. 88, 597–604 (2008)CrossRefGoogle Scholar
  53. 53.
    Kim, M., Day, D.F.: Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J. Ind. Microbiol. Biotechnol. 38, 803–807 (2011)CrossRefGoogle Scholar
  54. 54.
    Song, Z., Li, G., Guan, F., Liu, W.: Application of chitin/chitosan and their derivatives in the papermaking industry. Polymers 10, 389 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Rayhane Hamrouni
    • 1
    • 2
    Email author
  • Magalie Claeys-Bruno
    • 1
  • Josiane Molinet
    • 1
  • Ahmed Masmoudi
    • 2
  • Sevastianos Roussos
    • 1
  • Nathalie Dupuy
    • 1
  1. 1.Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBEMarseilleFrance
  2. 2.Univ. Manouba, ISBST, BVBGR-LR11ES31ArianaTunisia

Personalised recommendations