Advertisement

Nutrient and Pathogen Suppression Properties of Anaerobic Digestates from Dairy Manure and Food Waste Feedstocks

  • Brendan J. O’Brien
  • Deborah A. Neher
  • Eric D. RoyEmail author
Short Communication

Abstract

Anaerobic co-digestion of dairy manure and food wastes is increasing in the New England region of the United States because of policy measures intended to divert organic materials from landfills, reduce greenhouse gas emissions, and increase renewable biogas energy production. The sustainability of this approach depends on the management and valorization of remaining solid and liquid residues (i.e., digestates) after anaerobic digestion. Few studies have characterized digestates derived from combined dairy manure and food waste feedstocks. In this study, we analyzed screw-press separated liquid and solid digestates from 6 of 26 (23%) operational full-scale facilities in New England. We quantified multiple pools of nitrogen and phosphorus in these materials, with results suggesting that, in most cases, these nutrients largely exist in forms that can be recycled via slow-release fertilization, with smaller fractions in forms more easily lost to the environment. Furthermore, we found that solid digestates can inhibit mycelial growth of a common soilborne fungal pathogen, Rhizoctonia solani, suggesting potential to manage resident soil pathogens. Capitalizing on both nutrient recycling and pathogen suppression co-benefits will likely be useful in digestate valorization efforts.

Graphic Abstract

Keywords

Nitrogen Phosphorus Nutrient recovery and recycling Biogas residues Anaerobic co-digestion Digestate Pathogen suppression 

Notes

Acknowledgements

We acknowledge Adrian Wiegman, Lauren Bomeisl, Thomas R. Weicht, and Sydney Stegman for assistance with sample collection and laboratory work. We also thank Dr. Carol Adair for comments on drafts of this manuscript. This work was supported by Casella Waste Systems, Inc. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

12649_2019_906_MOESM1_ESM.pdf (249 kb)
Supplementary material 1 (PDF 248 kb)

References

  1. 1.
    Insam, H., Gómez-Brandón, M., Ascher, J.: Manure-based biogas fermentation residues—friend or foe of soil fertility? Soil Biol. Biochem. 84, 1–14 (2015).  https://doi.org/10.1016/j.soilbio.2015.02.006 CrossRefGoogle Scholar
  2. 2.
    Collivignarelli, M.C., Bertanza, G., Abbà, A., Sordi, M., Pedrazzani, R.: Synergy between anaerobic digestion and a post-treatment based on Thermophilic Aerobic Membrane Reactor (TAMR). Environ. Prog. Sustain. Energy 36, 1802–1809 (2017).  https://doi.org/10.1002/ep.12677 CrossRefGoogle Scholar
  3. 3.
    Moset, V., Poulsen, M., Wahid, R., Højberg, O., Møller, H.B.: Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb. Biotechnol. 8, 787–800 (2015).  https://doi.org/10.1111/1751-7915.12271 CrossRefGoogle Scholar
  4. 4.
    USDA.: Manure Use for Fertilizer and for Energy, Report to Congress. U.S. Department of Agriculture, Washington, DC (2009)Google Scholar
  5. 5.
    Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L.: Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric. Ecosyst. Environ. 118, 173–182 (2007).  https://doi.org/10.1016/j.agee.2006.05.007 CrossRefGoogle Scholar
  6. 6.
    Balsari, P., Bonfanti, P., Bozza, E., & Sangiorgi, F.: Evaluation of the influence of animal feeding on the performances of a biogas installation (mathematical model). In: Third International Symposium on Anaerobic Digestion. Boston, MA, USA, (Vol. 20, p. 7) (1983)Google Scholar
  7. 7.
    Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 129, 170–176 (2013).  https://doi.org/10.1016/j.biortech.2012.10.138 CrossRefGoogle Scholar
  8. 8.
    Li, T., Mazéas, L., Sghir, A., Leblon, G., Bouchez, T.: Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ. Microbiol. 11, 889–904 (2009).  https://doi.org/10.1111/j.1462-2920.2008.01810.x CrossRefGoogle Scholar
  9. 9.
    El-Mashad, H.M., Zhang, R.: Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 101, 4021–4028 (2010).  https://doi.org/10.1016/j.biortech.2010.01.027 CrossRefGoogle Scholar
  10. 10.
    Agyeman, F.O., Tao, W.: Anaerobic co-digestion of food waste and dairy manure : effects of food waste particle size and organic loading rate. J. Environ. Manag. 133, 268–274 (2014).  https://doi.org/10.1016/j.jenvman.2013.12.016 CrossRefGoogle Scholar
  11. 11.
    Banks, C.J., Chesshire, M., Heaven, S., Arnold, R.: Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresour. Technol. 102, 612–620 (2011).  https://doi.org/10.1016/j.biortech.2010.08.005 CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Banks, C.J., Heaven, S.: Co-digestion of source segregated domestic food waste to improve process stability. Bioresour. Technol. 114, 168–178 (2012).  https://doi.org/10.1016/j.biortech.2012.03.040 CrossRefGoogle Scholar
  13. 13.
    Tampio, E., Marttinen, S., Rintala, J.: Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. J. Clean. Prod. 125, 22–32 (2016).  https://doi.org/10.1016/j.jclepro.2016.03.127 CrossRefGoogle Scholar
  14. 14.
    Tampio, E., Salo, T., Rintala, J.: Agronomic characteristics of five different urban waste digestates. J. Environ. Manag. 169, 293–302 (2016).  https://doi.org/10.1016/j.jenvman.2016.01.001 CrossRefGoogle Scholar
  15. 15.
    Teglia, C., Tremier, A., Martel, J.L.: Characterization of solid digestates: Part 1, review of existing indicators to assess solid digestates agricultural use. Waste Biomass Valorization 2, 43–58 (2011).  https://doi.org/10.1007/s12649-010-9051-5 CrossRefGoogle Scholar
  16. 16.
    Teglia, C., Tremier, A., Martel, J.L.: Characterization of solid digestates: Part 2, assessment of the quality and suitability for composting of six digested products. Waste Biomass Valorization 2, 113–126 (2011).  https://doi.org/10.1007/s12649-010-9059-x CrossRefGoogle Scholar
  17. 17.
    Möller, K., Müller, T.: Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12, 242–257 (2012).  https://doi.org/10.1002/elsc.201100085 CrossRefGoogle Scholar
  18. 18.
    O’Brien, B.J., Milligan, E., Carver, J., Roy, E.D.: Integrating anaerobic co-digestion of dairy manure and food waste with cultivation of edible mushrooms for nutrient recovery. Bioresour. Technol. 285, 121312 (2019).  https://doi.org/10.1016/j.biortech.2019.121312 CrossRefGoogle Scholar
  19. 19.
    Abubaker, J., Risberg, K., Pell, M.: Biogas residues as fertilisers—effects on wheat growth and soil microbial activities. Appl. Energy 99, 126–134 (2012).  https://doi.org/10.1016/j.apenergy.2012.04.050 CrossRefGoogle Scholar
  20. 20.
    Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F.: Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81, 577583 (2010).  https://doi.org/10.1016/j.chemosphere.2010.08.034 CrossRefGoogle Scholar
  21. 21.
    Tambone, F., Orzi, V., D’Imporzano, G., Adani, F.: Solid and liquid fractionation of digestate: mass balance, chemical characterization, and agronomic and environmental value. Bioresour. Technol. 243, 1251–1256 (2017).  https://doi.org/10.1016/j.biortech.2017.07.130 CrossRefGoogle Scholar
  22. 22.
    Zirkler, D., Peters, A., Kaupenjohann, M.: Elemental composition of biogas residues: variability and alteration during anaerobic digestion. Biomass Bioenergy 67, 89–98 (2014).  https://doi.org/10.1016/j.biombioe.2014.04.021 CrossRefGoogle Scholar
  23. 23.
    Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010).  https://doi.org/10.1007/s00253-009-2246-7 CrossRefGoogle Scholar
  24. 24.
    Baldi, M., Collivignarelli, M.C., Abbà, A., Benigna, I.: The valorization of ammonia in manure digestate by means of alternative stripping reactors. Sustainability 10, 1–14 (2018).  https://doi.org/10.3390/su10093073 CrossRefGoogle Scholar
  25. 25.
    Zhang, Q., Hu, J., Lee, D.J.: Biogas from anaerobic digestion processes: research updates. Renew. Energy 98, 108–119 (2016).  https://doi.org/10.1016/j.renene.2016.02.029 CrossRefGoogle Scholar
  26. 26.
    van der Wurff, A.W.G., Fuchs, J.G., Raviv, M., Termorshuizen, A.: Handbook for Composting and Compost Use in Organic Horticulture. BioGreenhouse COST Action FA 110 (2016)Google Scholar
  27. 27.
    Møller, H.B., Lund, I., Sommer, S.G.: Solid-liquid separation of livestock slurry: efficiency and cost. Bioresour. Technol. 74, 223–229 (2000).  https://doi.org/10.1016/S09608524(00)00016-X CrossRefGoogle Scholar
  28. 28.
    Stutter, M.I.: The composition, leaching, and sorption behavior of some alternative sources of phosphorus for soils. Ambio 44, 207–216 (2015).  https://doi.org/10.1007/s13280-014-0615-7 CrossRefGoogle Scholar
  29. 29.
    Newtrient.: Manure Technology Catalogue and Personal Communication with Technology Team Supporting the Catalogue. Newtrient, LLC, Chicago (2017)Google Scholar
  30. 30.
    Brod, E., Øgaard, A.F., Haraldsen, T.K., Krogstad, T.: Waste products as alternative phosphorus fertilisers part II: predicting P fertilisation effects by chemical extraction. Nutr. Cycl. Agroecosyst. 103, 187–199 (2015).  https://doi.org/10.1007/s10705-015-9731-4 CrossRefGoogle Scholar
  31. 31.
    Brod, E., Øgaard, A.F., Hansen, E., Wragg, D., Haraldsen, T.K., Krogstad, T.: Waste products as alternative phosphorus fertilisers part I: inorganic P species affect fertilisation effects depending on soil pH. Nutr. Cycl. Agroecosyst. 103, 167–185 (2015).  https://doi.org/10.1007/s10705-015-9734-1 CrossRefGoogle Scholar
  32. 32.
    Roy, E.D.: Phosphorus recovery and recycling with ecological engineering: a review. Ecol. Eng. (2017).  https://doi.org/10.1016/j.ecoleng.2016.10.076 CrossRefGoogle Scholar
  33. 33.
    Garcia, V.G., Onco, M.A.P., Susan, V.R.: Review. Biology and systematics of the form genus Rhizoctonia. Spanish J. Agric. Res. 4, 55–79 (2006).  https://doi.org/10.5424/sjar/2006041-178 CrossRefGoogle Scholar
  34. 34.
    EPA, 2018. AgSTAR: Biogas Recovery in the Agriculture Sector. https://www.epa.gov/agstar
  35. 35.
    Peters, J., Combs, S.M., Hoskins, B., Jarman, J., Kovar, J.L., Watson, M.E., Wolf, A.M., Wolf, N.: Recommended Methods of Manure Analysis (A3769), pp. 1–3. University of Wisconsin Extension, Madison (2003)Google Scholar
  36. 36.
    Doane, T.A., Horwáth, W.R.: Spectrophotometric determination of nitrate with a singlereagent. Anal. Lett. 36, 2713–2722 (2003).  https://doi.org/10.1177/0095399713481599 CrossRefGoogle Scholar
  37. 37.
    Weatherburn, M.W.: Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39, 971–974 (1967).  https://doi.org/10.1021/ac60252a045 CrossRefGoogle Scholar
  38. 38.
    Kleinman, P., Sullivan, D., Wolf, A., Brandt, R., Dou, Z., Elliott, H., Kovar, J., Leytem, A., Maguire, R., Moore, P., Saporito, L., Sharpley, A., Shober, A., Sims, T., Toth, J., Toor, G., Zhang, H., Zhang, T.: Selection of a water-extractable phosphorus test for manures and biosolids as an indicator of runoff loss potential. J. Environ. Qual. 36, 13571367 (2007).  https://doi.org/10.2134/jeq2006.0450 CrossRefGoogle Scholar
  39. 39.
    Sparks, D.L., Helmke, P.A., Page, A.L.: Methods of Soil Analysis: Chemical Methods. SSSA, Madison (1996)Google Scholar
  40. 40.
    Chapman and Pratt: Methods of Analysis for Soils, Plants, & Waters, p. 60. University of California, Division of Agriculture, Riverside (1961)Google Scholar
  41. 41.
    Lajtha, K., Driscoll, C.T., Jarrell, W.M., Elliott, E.T.: Soil phosphorus: characterization and total element analysis. In: Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P. (eds.) Standard Soil Methods for Long-Term Ecological Research, pp. 115–142. Oxford University Press, New York (1999)Google Scholar
  42. 42.
    Neher, D.A., Fang, L., Weicht, T.R.: Ecoenzymes as indicators of compost to suppress Rhizoctonia solani. Compost Sci. Util. 25, 251–261 (2017).  https://doi.org/10.1080/1065657X.2017.1300548 CrossRefGoogle Scholar
  43. 43.
    Neher, D.A., Weicht, T.R.: A plate competition assay as a quick preliminary assessment of disease suppression. J. Vis. Exp. e58767 (2018).  https://doi.org/10.3791/58767
  44. 44.
    Brinton, W. F.; Compost Quality Standards and Grades. Prepared for New York State Association of Recyclers (2000)Google Scholar
  45. 45.
    Slavov, A.: Performance of complete-mix and plug-flow systems during treatment of low loaded nitrogen deficient waste water-simulation with ASAL1 model. Food Environ. Saf. J. 15(2), 101–107 (2017)Google Scholar
  46. 46.
    Rose, T.J., Schefe, C., Weng, Z.H., Rose, M.T., van Zwieten, L., Liu, L., Rose, A.L.: Phosphorus speciation and bioavailability in diverse biochars. Plant Soil 443(1–2), 233–244 (2019)CrossRefGoogle Scholar
  47. 47.
    Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P.A., Tack, F.M., Meers, E.: Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valorization 8(1), 21–40 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonUSA
  2. 2.Department of Plant and Soil ScienceUniversity of VermontBurlingtonUSA

Personalised recommendations