Advertisement

Bio-nanocomposite Films Reinforced with Various Types of Cellulose Nanocrystals Isolated from Oil Palm Biomass Waste

  • Junidah Lamaming
  • Rokiah HashimEmail author
  • Cheu Peng Leh
  • Othman Sulaiman
  • Sofie Zarina Lamaming
Original Paper
  • 3 Downloads

Abstract

Studies of bio-nanocomposites using sustainable green materials from biomass waste are presently gain the attention worldwide. This study investigated the properties of bio-nanocomposite films from polyvinyl alcohol incorporated with 1%, 3%, and 5% via solvent casting method using various types of oil palm trunk cellulose nanocrystals isolated using various types of treatment. The produced bio-nanocomposite films were characterized for their mechanical behavior, morphological properties, thermal properties, and functionality groups and the effect of adding the oil palm trunk cellulose nanocrystals into the bio-nanocomposites films were then evaluated. The results showed that the mechanical properties and thermal stabilities of the bio-nanocomposite films increased with the incorporation of cellulose nanocrystals. The bio-nanocomposite films added with 3% cellulose nanocrystals with pre-hydrolysis treatment showed better mechanical and thermal properties and hence have a great potential to be utilized as a raw material or reinforcement in the packaging industries.

Graphic Abstract

Keywords

Bio-nanocomposite films Cellulose nanocrystals Oil palm trunk waste Reinforcement Mechanical properties 

Notes

Acknowledgements

The authors acknowledge and gratefully thanked Universiti Sains Malaysia for the project funding under a research grant (1001/PTEKIND/811255) and the postdoctoral fellowship to Dr. Junidah Lamaming.

Compliance with Ethical Standards

Conflict of interest

The authors confirmed that there are no conflicts of interest associated with this publication.

References

  1. 1.
    Kushairi, A., Singh, R., Ong-Abdullah, M.: The oil palm industry in Malaysia: Thriving with transformative technologies. J. Oil Palm Res. 29(4), 431–439 (2017)Google Scholar
  2. 2.
    Darder, M., Aranda, P., Ruiz-Hitzky, E.: Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater. 19, 1309–1319 (2007)CrossRefGoogle Scholar
  3. 3.
    Chivrac, F., Pollet, E., Avérous, L.: Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater. Sci. Eng. R. 67, 1–17 (2009)CrossRefGoogle Scholar
  4. 4.
    Lin, T.W., Corvelli, A.A., Frondoza, C.G., Roberts, J.C., Hungerford, D.S.: Glass peek composite promotes proliferation and osteocalcin production of human osteoblastic cells. J. Biomed. Mater. Res. 36, 137–144 (1997)CrossRefGoogle Scholar
  5. 5.
    Gonzalez, J.S., Ludueña, L.N., Ponce, A., Alvarez, V.A.: Poly (vinyl alcohol) cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater. Sci. Eng. C. 34, 54–61 (2014)CrossRefGoogle Scholar
  6. 6.
    Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M.: A review on the tensile properties of natural fiber reinforced polymer composites. Compos B 42(4), 856–887 (2011)CrossRefGoogle Scholar
  7. 7.
    Takeno, H., Nakamura, W.: Structural and mechanical properties of composite hydrogels composed of clay and a polyelectrolyte prepared by mixing. Colloid Polym. Sci. 291(6), 1393–1399 (2012)CrossRefGoogle Scholar
  8. 8.
    Kargarzadeh, H., Huang, J., Lin, N., Ahmad, I., Mariano, M., Dufresne, A., Thomas, S., Gałeski, A.: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci 87, 197–227 (2018)CrossRefGoogle Scholar
  9. 9.
    Tan, B., Ching, Y., Poh, S., Abdullah, L., Gan, S.: A review of natural fiber reinforced poly(vinyl alcohol) based composites: application and opportunity. Polymers 7(11), 2205–2222 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, W., Wu, Q., Zhao, X., Huang, Z., Cao, J., Li, J., Liu, S.: Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohyd Polym. 113, 403–410 (2014)CrossRefGoogle Scholar
  11. 11.
    Sedlařík, V., Saha, N., Kuritka, I., Sáha, P.: Characterization of polymeric biocomposite based on poly (vinyl alcohol) and poly (vinyl pyrrolidone). Polym. Compos. 27, 147–152 (2006)CrossRefGoogle Scholar
  12. 12.
    Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M.: Cellulosic nanocomposites: a review. BioResources 3(3), 929–980 (2008)Google Scholar
  13. 13.
    Roohani, M., Habibi, Y., Belgacem, N., Ebrahim, G., Karimi, A.N., Dufresne, A.: Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym. J. 44, 2489–2498 (2008)CrossRefGoogle Scholar
  14. 14.
    Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., Rojas, O.J.: Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11, 674–681 (2011)CrossRefGoogle Scholar
  15. 15.
    Voronova, M.I., Surov, O.V., Guseinov, S.S., Barannikov, V.P., Zakharov, A.G.: Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites. Carbohyd. Polym. 130, 440–447 (2015)CrossRefGoogle Scholar
  16. 16.
    Fortunati, E., Puglia, D., Monti, M., Santulli, C., Maniruzzaman, M., Kenny, J.M.: Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J. Appl. Polym. Sci. 128(5), 3220–3230 (2012)CrossRefGoogle Scholar
  17. 17.
    Fortunati, E., Puglia, D., Luzi, F., Santulli, C., Kenny, J.M., Torre, L.: Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohyd. Polym. 97, 825–836 (2013)CrossRefGoogle Scholar
  18. 18.
    Azizi Samir, M.A.S., Alloin, F., Paillet, M., Dufresne, A.: Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules. 37(11), 4313–4316 (2004).CrossRefGoogle Scholar
  19. 19.
    Bulota, M., Jääskeläinen, A.S., Paltakari, J., Hughes, M.: Properties of biocomposites: influence of preparation method, testing environment and a comparison with theoretical models. J. Mater Sci. 46, 3387–3398 (2011)CrossRefGoogle Scholar
  20. 20.
    Baheti, V., Militky, V., Marsalkova, M.: Mechanical properties of poly lactic acid composite films reinforced with wet milled jute nanocfibers. Polym. Composites 34(12), 2133–2141 (2013)CrossRefGoogle Scholar
  21. 21.
    Lee, K.Y., Aitomäki, Y., Berglund, L.A., Oksman, K., Bismarck, A.: On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci Technol 105, 15–27 (2014)CrossRefGoogle Scholar
  22. 22.
    Missio, A. L., Mattos, B. D., Ferreira, D, D. F., Magalhães, W. L. E., Bertuol, D. A., Gatto, D. A., Petutschnigg, A., Tondi, G.: Nanocellulose-tannin films: From trees to sustainable active packaging. J. Clean Prod. 184, 143–151 (2018).CrossRefGoogle Scholar
  23. 23.
    Kumode, M.M.N., Bolzon, G.I.M., Magalhães, W.L.E., Kestur, S.G.: Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of ‘green’ composites with castor seed cake. J. Clean. Prod. 149, 1157–1163 (2017)CrossRefGoogle Scholar
  24. 24.
    Lamaming, J., Hashim, R., Sulaiman, O., Leh, C.P., Sugimoto, T., Nordin, N.A.: Cellulose nanocrystal isolated from oil palm trunk. Carbohyd. Polym. 127, 202–208 (2015)CrossRefGoogle Scholar
  25. 25.
    Lamaming, J., Hashim, R., Sulaiman, O., Leh, C.P.: Properties of cellulose nanocrystal from oil palm trunk isolated by total chlorine free method. Carbohyd. Polym. 156, 409–416 (2017)CrossRefGoogle Scholar
  26. 26.
    Rhim, J.W., Reddy, J.P., Luo, X.: Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22, 407–420 (2015)CrossRefGoogle Scholar
  27. 27.
    Cheng, Q., Wang, S., Rials, T.G., Lee, S.H.: Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14, 593–602 (2007)CrossRefGoogle Scholar
  28. 28.
    Qua, E.H., Hornsby, P.R., Sharma, H.S.S., Lyons, G., McCall, R.D.: Preparation and characterization of poly (vinyl) alcohol nanocomposites made from cellulose nanofibers. J Appl. Polym. Sci. 113, 2238–2247 (2011)CrossRefGoogle Scholar
  29. 29.
    Millon, L.E., Wan, W.K.: The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J. Biomed. Mater. Res. B 79B, 245–253 (2006)CrossRefGoogle Scholar
  30. 30.
    Klemm, D., Kramer, F., Moritz, S., Linström, T., Ankerfors, M., Gray, D., Dorris, A.: Nanocellulose: a new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438–5466 (2011)CrossRefGoogle Scholar
  31. 31.
    Fujisawa, S., Okita, Y., Fukuzimi, H., Saito, T., Isogai, A.: Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohyd. Polym. 84(1), 579–583 (2011)CrossRefGoogle Scholar
  32. 32.
    Bhatnagar, A., Sain, M.: Processing of cellulose nanofiber-reinforced composites. J. Reinf. Plast. Compos. 24, 1259–1268 (2005)CrossRefGoogle Scholar
  33. 33.
    Mandal, A., Chakrabarty, D.: Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd. Polym. 76, 94–99 (2011)Google Scholar
  34. 34.
    Pei, A., Zhou, Q., Berglund, L.A.: Functionalized cellulose nanocrystals as biobased nucleation agents in poly((l-lactide) (PLLA)- Crystallization and mechanical property effects. Compos. Sci. Technol. 70(5), 815–821 (2010)CrossRefGoogle Scholar
  35. 35.
    Wang, N., Ding, E., Cheng, R.: Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymers 48, 3486–3493 (2007)CrossRefGoogle Scholar
  36. 36.
    Li, W., Yue, J., Liu, S.: Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason. Sonochem. 19, 479–485 (2012)CrossRefGoogle Scholar
  37. 37.
    Lee, S.Y., Mohan, D.J., Kang, I.A., Doh, G.H., Lee, S., Han, S.O.: Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym. 10, 77–82 (2009)CrossRefGoogle Scholar
  38. 38.
    Panaitescu, D.M., Frone, A.N., Ghiurea, M., Spataru, C.I., Radovici, C., Iorga, M.D.: Properties of polymer composites with cellulose microfibrils. In: Attaf B, editor, Advances in Composite Materials-Ecodesign and Analysis. Crotia: Intech. (2011).Google Scholar
  39. 39.
    da Silva, C.G., Kano, F.S., Rosa, D.S.: Lignocellulosic nanofiber from eucalyptus waste by a green process and their influence in bionanocomposites. Waste Biomass Valor. (2019).  https://doi.org/10.1007/s12649-019-00610-3 CrossRefGoogle Scholar
  40. 40.
    Rahman, M.M., Afrin, S., Haque, P., Islam, M.M., Islam, M.S., Abdul Gafur, M.: Preparation and characterization of jute cellulose crystals-reinforced poly(L-lactic acid) biocomposite for biomedical applications. J. Chem. Eng Int. (2014).  https://doi.org/10.1155/2014/842147 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Junidah Lamaming
    • 1
  • Rokiah Hashim
    • 1
    Email author
  • Cheu Peng Leh
    • 1
  • Othman Sulaiman
    • 1
  • Sofie Zarina Lamaming
    • 1
  1. 1.Division of Bioresource, Paper and Coatings Technology, School of Industrial TechnologyUniversiti Sains MalaysiaMindenMalaysia

Personalised recommendations