Bio-nanocomposite Films Reinforced with Various Types of Cellulose Nanocrystals Isolated from Oil Palm Biomass Waste
- 3 Downloads
Abstract
Studies of bio-nanocomposites using sustainable green materials from biomass waste are presently gain the attention worldwide. This study investigated the properties of bio-nanocomposite films from polyvinyl alcohol incorporated with 1%, 3%, and 5% via solvent casting method using various types of oil palm trunk cellulose nanocrystals isolated using various types of treatment. The produced bio-nanocomposite films were characterized for their mechanical behavior, morphological properties, thermal properties, and functionality groups and the effect of adding the oil palm trunk cellulose nanocrystals into the bio-nanocomposites films were then evaluated. The results showed that the mechanical properties and thermal stabilities of the bio-nanocomposite films increased with the incorporation of cellulose nanocrystals. The bio-nanocomposite films added with 3% cellulose nanocrystals with pre-hydrolysis treatment showed better mechanical and thermal properties and hence have a great potential to be utilized as a raw material or reinforcement in the packaging industries.
Graphic Abstract
Keywords
Bio-nanocomposite films Cellulose nanocrystals Oil palm trunk waste Reinforcement Mechanical propertiesNotes
Acknowledgements
The authors acknowledge and gratefully thanked Universiti Sains Malaysia for the project funding under a research grant (1001/PTEKIND/811255) and the postdoctoral fellowship to Dr. Junidah Lamaming.
Compliance with Ethical Standards
Conflict of interest
The authors confirmed that there are no conflicts of interest associated with this publication.
References
- 1.Kushairi, A., Singh, R., Ong-Abdullah, M.: The oil palm industry in Malaysia: Thriving with transformative technologies. J. Oil Palm Res. 29(4), 431–439 (2017)Google Scholar
- 2.Darder, M., Aranda, P., Ruiz-Hitzky, E.: Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater. 19, 1309–1319 (2007)CrossRefGoogle Scholar
- 3.Chivrac, F., Pollet, E., Avérous, L.: Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater. Sci. Eng. R. 67, 1–17 (2009)CrossRefGoogle Scholar
- 4.Lin, T.W., Corvelli, A.A., Frondoza, C.G., Roberts, J.C., Hungerford, D.S.: Glass peek composite promotes proliferation and osteocalcin production of human osteoblastic cells. J. Biomed. Mater. Res. 36, 137–144 (1997)CrossRefGoogle Scholar
- 5.Gonzalez, J.S., Ludueña, L.N., Ponce, A., Alvarez, V.A.: Poly (vinyl alcohol) cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater. Sci. Eng. C. 34, 54–61 (2014)CrossRefGoogle Scholar
- 6.Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M.: A review on the tensile properties of natural fiber reinforced polymer composites. Compos B 42(4), 856–887 (2011)CrossRefGoogle Scholar
- 7.Takeno, H., Nakamura, W.: Structural and mechanical properties of composite hydrogels composed of clay and a polyelectrolyte prepared by mixing. Colloid Polym. Sci. 291(6), 1393–1399 (2012)CrossRefGoogle Scholar
- 8.Kargarzadeh, H., Huang, J., Lin, N., Ahmad, I., Mariano, M., Dufresne, A., Thomas, S., Gałeski, A.: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci 87, 197–227 (2018)CrossRefGoogle Scholar
- 9.Tan, B., Ching, Y., Poh, S., Abdullah, L., Gan, S.: A review of natural fiber reinforced poly(vinyl alcohol) based composites: application and opportunity. Polymers 7(11), 2205–2222 (2015)CrossRefGoogle Scholar
- 10.Li, W., Wu, Q., Zhao, X., Huang, Z., Cao, J., Li, J., Liu, S.: Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohyd Polym. 113, 403–410 (2014)CrossRefGoogle Scholar
- 11.Sedlařík, V., Saha, N., Kuritka, I., Sáha, P.: Characterization of polymeric biocomposite based on poly (vinyl alcohol) and poly (vinyl pyrrolidone). Polym. Compos. 27, 147–152 (2006)CrossRefGoogle Scholar
- 12.Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M.: Cellulosic nanocomposites: a review. BioResources 3(3), 929–980 (2008)Google Scholar
- 13.Roohani, M., Habibi, Y., Belgacem, N., Ebrahim, G., Karimi, A.N., Dufresne, A.: Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym. J. 44, 2489–2498 (2008)CrossRefGoogle Scholar
- 14.Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., Rojas, O.J.: Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11, 674–681 (2011)CrossRefGoogle Scholar
- 15.Voronova, M.I., Surov, O.V., Guseinov, S.S., Barannikov, V.P., Zakharov, A.G.: Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites. Carbohyd. Polym. 130, 440–447 (2015)CrossRefGoogle Scholar
- 16.Fortunati, E., Puglia, D., Monti, M., Santulli, C., Maniruzzaman, M., Kenny, J.M.: Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J. Appl. Polym. Sci. 128(5), 3220–3230 (2012)CrossRefGoogle Scholar
- 17.Fortunati, E., Puglia, D., Luzi, F., Santulli, C., Kenny, J.M., Torre, L.: Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohyd. Polym. 97, 825–836 (2013)CrossRefGoogle Scholar
- 18.Azizi Samir, M.A.S., Alloin, F., Paillet, M., Dufresne, A.: Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules. 37(11), 4313–4316 (2004).CrossRefGoogle Scholar
- 19.Bulota, M., Jääskeläinen, A.S., Paltakari, J., Hughes, M.: Properties of biocomposites: influence of preparation method, testing environment and a comparison with theoretical models. J. Mater Sci. 46, 3387–3398 (2011)CrossRefGoogle Scholar
- 20.Baheti, V., Militky, V., Marsalkova, M.: Mechanical properties of poly lactic acid composite films reinforced with wet milled jute nanocfibers. Polym. Composites 34(12), 2133–2141 (2013)CrossRefGoogle Scholar
- 21.Lee, K.Y., Aitomäki, Y., Berglund, L.A., Oksman, K., Bismarck, A.: On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci Technol 105, 15–27 (2014)CrossRefGoogle Scholar
- 22.Missio, A. L., Mattos, B. D., Ferreira, D, D. F., Magalhães, W. L. E., Bertuol, D. A., Gatto, D. A., Petutschnigg, A., Tondi, G.: Nanocellulose-tannin films: From trees to sustainable active packaging. J. Clean Prod. 184, 143–151 (2018).CrossRefGoogle Scholar
- 23.Kumode, M.M.N., Bolzon, G.I.M., Magalhães, W.L.E., Kestur, S.G.: Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of ‘green’ composites with castor seed cake. J. Clean. Prod. 149, 1157–1163 (2017)CrossRefGoogle Scholar
- 24.Lamaming, J., Hashim, R., Sulaiman, O., Leh, C.P., Sugimoto, T., Nordin, N.A.: Cellulose nanocrystal isolated from oil palm trunk. Carbohyd. Polym. 127, 202–208 (2015)CrossRefGoogle Scholar
- 25.Lamaming, J., Hashim, R., Sulaiman, O., Leh, C.P.: Properties of cellulose nanocrystal from oil palm trunk isolated by total chlorine free method. Carbohyd. Polym. 156, 409–416 (2017)CrossRefGoogle Scholar
- 26.Rhim, J.W., Reddy, J.P., Luo, X.: Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22, 407–420 (2015)CrossRefGoogle Scholar
- 27.Cheng, Q., Wang, S., Rials, T.G., Lee, S.H.: Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14, 593–602 (2007)CrossRefGoogle Scholar
- 28.Qua, E.H., Hornsby, P.R., Sharma, H.S.S., Lyons, G., McCall, R.D.: Preparation and characterization of poly (vinyl) alcohol nanocomposites made from cellulose nanofibers. J Appl. Polym. Sci. 113, 2238–2247 (2011)CrossRefGoogle Scholar
- 29.Millon, L.E., Wan, W.K.: The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J. Biomed. Mater. Res. B 79B, 245–253 (2006)CrossRefGoogle Scholar
- 30.Klemm, D., Kramer, F., Moritz, S., Linström, T., Ankerfors, M., Gray, D., Dorris, A.: Nanocellulose: a new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438–5466 (2011)CrossRefGoogle Scholar
- 31.Fujisawa, S., Okita, Y., Fukuzimi, H., Saito, T., Isogai, A.: Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohyd. Polym. 84(1), 579–583 (2011)CrossRefGoogle Scholar
- 32.Bhatnagar, A., Sain, M.: Processing of cellulose nanofiber-reinforced composites. J. Reinf. Plast. Compos. 24, 1259–1268 (2005)CrossRefGoogle Scholar
- 33.Mandal, A., Chakrabarty, D.: Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd. Polym. 76, 94–99 (2011)Google Scholar
- 34.Pei, A., Zhou, Q., Berglund, L.A.: Functionalized cellulose nanocrystals as biobased nucleation agents in poly((l-lactide) (PLLA)- Crystallization and mechanical property effects. Compos. Sci. Technol. 70(5), 815–821 (2010)CrossRefGoogle Scholar
- 35.Wang, N., Ding, E., Cheng, R.: Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymers 48, 3486–3493 (2007)CrossRefGoogle Scholar
- 36.Li, W., Yue, J., Liu, S.: Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason. Sonochem. 19, 479–485 (2012)CrossRefGoogle Scholar
- 37.Lee, S.Y., Mohan, D.J., Kang, I.A., Doh, G.H., Lee, S., Han, S.O.: Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym. 10, 77–82 (2009)CrossRefGoogle Scholar
- 38.Panaitescu, D.M., Frone, A.N., Ghiurea, M., Spataru, C.I., Radovici, C., Iorga, M.D.: Properties of polymer composites with cellulose microfibrils. In: Attaf B, editor, Advances in Composite Materials-Ecodesign and Analysis. Crotia: Intech. (2011).Google Scholar
- 39.da Silva, C.G., Kano, F.S., Rosa, D.S.: Lignocellulosic nanofiber from eucalyptus waste by a green process and their influence in bionanocomposites. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-019-00610-3 CrossRefGoogle Scholar
- 40.Rahman, M.M., Afrin, S., Haque, P., Islam, M.M., Islam, M.S., Abdul Gafur, M.: Preparation and characterization of jute cellulose crystals-reinforced poly(L-lactic acid) biocomposite for biomedical applications. J. Chem. Eng Int. (2014). https://doi.org/10.1155/2014/842147 CrossRefGoogle Scholar