Advertisement

Biodegradation of Polyphenolic Compounds from Olive Mill Wastewaters (OMW) During Two-Stage Anaerobic Co-digestion of Agro-industrial Mixtures

  • Aikaterini I. VavourakiEmail author
  • Maria V. Zakoura
  • Margarita A. Dareioti
  • Michael Kornaros
Original Paper
  • 28 Downloads

Abstract

Due to OMW toxicity, low pH values, polyphenols, oils and fats content, and high organic load their uncontrolled disposal to the sea, rivers and soil causes problems to both environment and public health. Olive mill wastewater (OMW) is a phenolic-rich industrial effluent that can be advantageously valorized by the anaerobic digestion to the methane and agricultural fertilizer productions. The aim of this study was to determine the influence of anaerobic co-digestion of OMW in mixture with cheese whey (CW) and liquid cow manure (LCM) on phenolic fraction derived from OMW. Total phenol content of the two-stage anaerobically co-digested agro-industrial mixtures was significantly decreased (up to 50% degradation for both mixtures in a ratio of 55% OMW:40% CW:5% LCM, v/v/v and 80% OMW:20% CW). Main phenolic compounds namely Gallic acid, hydroxytyrosol, tyrosol, p-coumaric acid and oleuropein were identified in OMW samples. All five individual phenols in all OMW mixtures were degraded to a large extent (80% degradation for the mixture in a ratio of 55 OMW:40 CW:5% LCM and 80 OMW:20% CW and 100% degradation for 20 OMW:80% LCM.

Graphic Abstract

Keywords

Polyphenols Olive mill wastewater Anaerobic co-digestion Cheese whey Liquid cow manure 

Notes

Acknowledgements

This study was financially supported by the European Commission project LIFE08/ENV/GR578-INTEGRASTE.

References

  1. 1.
    Paraskeva, P., Diamadopoulos, E.: Technologies for olive mill wastewater (OMW) treatment: a review. J. Chem. Technol. Biotechnol. 81, 1475–1485 (2006)CrossRefGoogle Scholar
  2. 2.
    Obied, H.K., Allen, M.S., Bedgood, D.R., Prenzler, P.D., Robards, K., Stockmann, R.: Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agric. Food Chem. 53, 823–837 (2005)CrossRefGoogle Scholar
  3. 3.
    Mantzavinos, D., Kalogerakis, N.: Treatment of olive mill effluents Part I. Organic matter degradation by chemical and biological processes—an overview. Environ. Int. 31, 289–295 (2005)CrossRefGoogle Scholar
  4. 4.
    Borja, R., Rincn, B., Raposo, F.: Anaerobic biodegradation of two-phase olive mill solid wastes and liquid effluents: kinetic studies and process performance. J. Chem. Technol. Biotechnol. 81, 1450–1462 (2006)CrossRefGoogle Scholar
  5. 5.
    Roig, A., Cayuela, M.L., Sánchez-Monedero, M.A.: An overview on olive mill wastes and their valorisation methods. Waste Manage. 26, 960–969 (2006)CrossRefGoogle Scholar
  6. 6.
    Kalogerakis, N., Politi, M., Foteinis, S., Chatzisymeon, E., Mantzavinos, D.: Recovery of antioxidants from olive mill wastewaters: a viable solution that promotes their overall sustainable management. J. Envir. Manag. 128, 749–758 (2013)CrossRefGoogle Scholar
  7. 7.
    Mantzavinos, D., Kalogerakis, N.: Treatment of olive mill effluents Part I. Organic matter degradation by chemical and biological processes—an overview. Envir. Intern. 31, 289–295 (2005)CrossRefGoogle Scholar
  8. 8.
    Rahmanian, N., Jafari, S.M., Galanakis, C.M.: Recovery and removal of phenolic compounds from olive mill wastewater. JAOCS 91, 1–18 (2014)CrossRefGoogle Scholar
  9. 9.
    Dareioti, M.A., Dokianakis, S.N., Stamatelatou, K., Zafiri, C., Kornaros, M.: Biogas production from anaerobic Co-digestion of agroindustrial wastewaters under mesophilic conditions in a two-stage process. Desalination 248, 891–906 (2009)CrossRefGoogle Scholar
  10. 10.
    Hamdi, M.: Future prospects and constraints of olive mill wastewaters use and treatment: a review. Bioprocess. Eng. 8, 209–214 (1993)CrossRefGoogle Scholar
  11. 11.
    Tabatabaei, M., Rahim, R.A., Abdullah, N., Wright, A.D.G., Shirai, Y., Sakai, K., Sulaiman, A., Hassan, M.A.: Importance of the methanogenic archaea populations in anaerobic wastewater treatments. Proc. Biochem. 45, 1214–1225 (2010)CrossRefGoogle Scholar
  12. 12.
    Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Biores. Technol. 99, 4044–4064 (2008)CrossRefGoogle Scholar
  13. 13.
    Beccari, M., Carucci, G., Majone, M., Torrisi, L.: Role of lipids and phenolic compounds in the anaerobic treatment of olive oil mill effluents. Environm. Technol. 20, 105–110 (1999)Google Scholar
  14. 14.
    Borja, R., Martin, A., Maestro, R., Alba, J., Fiestas, J.A.: Enhancement of the anaerobic digestion of olive mill wastewater by the removal of phenolic inhibitors. Proc. Biochem. 27, 231–237 (1992)CrossRefGoogle Scholar
  15. 15.
    Hamdi, M.: Anaerobic digestion of olive mill wastewaters. Process Biochem. 31, 105–110 (1996)CrossRefGoogle Scholar
  16. 16.
    Aktas, E., Imre, S., Ersoy, L.: Characterization and lime treatment of olive mill wastewater. Water Res. 35, 2336–2340 (2001)CrossRefGoogle Scholar
  17. 17.
    Hamdi, M.: Thermoacidic precipitation of darkly coloured polyphenols of olive mill wastewaters. Environ. Technol. 14, 495–500 (1993)CrossRefGoogle Scholar
  18. 18.
    Sabbah, I., Marsook, T., Basheer, S.: The effect of pretreatment on anaerobic activity of olive mill wastewater using batch and continuous systems. Process. Biochem. 39, 1947–1951 (2004)CrossRefGoogle Scholar
  19. 19.
    Scoma, A., Bertin, L., Zanaroli, G., Fraraccio, S., Fava, F.: A physicochemical–biotechnological approach for an integrated valorization of olive mill wastewater. Biores. Technol. 102, 10273–10279 (2011)CrossRefGoogle Scholar
  20. 20.
    Borja, R., Martin, A., Alonso, V., Garcia, I., Banks, C.J.: Influence of different aerobic pretreatments on the kinetics of anaerobic digestion of olive mill wastewater. Water Res. 29, 489–495 (1995)CrossRefGoogle Scholar
  21. 21.
    Fountoulakis, M.S., Dokianakis, S.N., Kornaros, M.E., Aggelis, G.G., Lyberatos, G.: Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res. 36, 4735–4744 (2002)CrossRefGoogle Scholar
  22. 22.
    Gonçalves, M.R., Costa, J.C., Marques, I.P., Alves, M.M.: Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater. Water Res. 46, 1684–1692 (2012)CrossRefGoogle Scholar
  23. 23.
    Gelegenis, J., Georgakakis, D., Angelidaki, I., Christopoulou, N., Goumenaki, M.: Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure. Appl. Energy 84, 646–663 (2007)CrossRefGoogle Scholar
  24. 24.
    Sampaio, M.A., Goncalves, M.R., Marques, I.P.: Anaerobic digestion challenge of raw olive mill wastewater. Biores. Technol. 102, 10810–10818 (2011)CrossRefGoogle Scholar
  25. 25.
    Fezzani, B., Cheikh, R.B.: Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Biores. Technol. 101, 1628–1634 (2010)CrossRefGoogle Scholar
  26. 26.
    Rincón, B., Borja, R., Martín, M.A., Martín, A.: Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic–acidogenic step. Waste Manage. 29, 2566–2573 (2009)CrossRefGoogle Scholar
  27. 27.
    Abbassi, B.E.: Anaerobic co-digestion of solid residue and wastewater from olive-oil mills. J. Solid Waste Technol. Manag. 30, 226–232 (2004)Google Scholar
  28. 28.
    La Cara, F., Ionata, E., Del Monaco, G., Marcolongo, L., Gonçalves, M.R., Marques, I.P.: Olive mill wastewater anaerobically digested: phenolic compounds with antiradical activity. Chem. Eng. Trans. 27, 325–330 (2012)Google Scholar
  29. 29.
    Marques, I.P.: Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 137, 233–239 (2001)CrossRefGoogle Scholar
  30. 30.
    Azaizeh, H., Jadoun, J.: Co-digestion of olive mill wastewater and swine manure using up-flow anaerobic sludge blanket reactor for biogas production. J. Water Res. Prot. 2, 314–321 (2010)CrossRefGoogle Scholar
  31. 31.
    Dareioti, M.A., Dokianakis, S.N., Stamatelatou, K., Zafiri, C., Kornaros, M.: Exploitation of olive mill wastewater and liquid cow manure for biogas production. Waste Manage. 30, 1841–1848 (2010)CrossRefGoogle Scholar
  32. 32.
    Khoufi, S., Louhichi, A., Sayadi, S.: Optimization of anaerobic co-digestion of olive mill wastewater and liquid poultry manure in batch condition and semi-continuous jet-loop reactor. Biores. Technol. 182, 67–74 (2015)CrossRefGoogle Scholar
  33. 33.
    Kougias, P.G., Kotsopoulos, T.A., Martzopoulos, G.G.: Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure. Renew. Energ. 69, 202–207 (2014)CrossRefGoogle Scholar
  34. 34.
    Azbar, N., Keskin, T., Yuruyen, A.: Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass Bioenerg. 32, 1195–1201 (2008)CrossRefGoogle Scholar
  35. 35.
    Dareioti, M.A., Vavouraki, A.I., Kornaros, M.: Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: a lab-scale evaluation using batch tests. Biores. Technol. 162, 218–227 (2014)CrossRefGoogle Scholar
  36. 36.
    Dareioti, M.A., Kornaros, M.: Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Biores. Technol. 167, 407–415 (2014)CrossRefGoogle Scholar
  37. 37.
    Angelidaki, I., Ahring, B.K.: Codigestion of olive oil mill wastewaters with manure, household waste or sewage sludge. Biodegradation 8, 221–226 (1997)CrossRefGoogle Scholar
  38. 38.
    Martinez-Garcia, G., Johnson, A.C., Bachmann, R.T., Williams, C.J., Burgoyne, A., Edyvean, R.G.J.: Two-stage biological treatment of olive mill wastewater with whey as co-substrate. Int. Biodeter. Biodegrad. 59, 273–282 (2007)CrossRefGoogle Scholar
  39. 39.
    Martinez-Garcia, G., Johnson, A.C., Bachmann, R.T., Williams, C.J., Burgoyne, A., Edyvean, R.G.J.: Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis. J. Hazard. Mater. 164, 1398–1405 (2009)CrossRefGoogle Scholar
  40. 40.
    De Marco, E., Savarese, M., Paduano, A., Sacchi, R.: Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 104, 858–867 (2007)CrossRefGoogle Scholar
  41. 41.
    Juárez, M.J.B., Zafra-Gómez, A., Luzón-Toro, B., Ballesteros-García, O.A., Navalón, A., González, J., Vílchez, J.L.: Gas chromatographic–mass spectrometric study of the degradation of phenolic compounds in wastewater olive oil by Azotobacter Chroococcum. Biores. Technol. 99, 2392–2398 (2008)CrossRefGoogle Scholar
  42. 42.
    Zafra, A., Juárez, M.J.B., Blanc, R., Navalón, A., González, J., Vílchez, J.L.: Determination of polyphenolic compounds in wastewater olive oil by gas chromatography–mass spectrometry. Talanta 70, 213–218 (2006)CrossRefGoogle Scholar
  43. 43.
    Daâssi, D., Lozano-Sánchez, J., Borrás-Linares, I., Belbahri, L., Woodward, S., Zouari-Mechichi, H., Mechichi, T., Nasri, M., Segura-Carretero, A.: Olive oil mill wastewaters: phenolic content characterization during degradation by Coriolopsis gallica. Chemosphere 113, 62–70 (2014)CrossRefGoogle Scholar
  44. 44.
    Tzathas, K., Chrysagi, E., Lyberatos, G., Vlyssides, A., Vlysidis, A.: Pretreatment of olive mill wastes for the extraction of residual oil and high added value compounds. Waste Biomass Valori. (2019).  https://doi.org/10.1007/s12649-019-00727-5 CrossRefGoogle Scholar
  45. 45.
    Achma, R.B., Ghorbel, A., Dafinov, A., Medina, F.: Anaerobic digestion of olive oil mill wastewater pre-treated with catalytic wet peroxide photo-oxidation using copper supported pillared clay catalysts. J. Mater. Sci. Chem. Eng. 2, 9–17 (2014)Google Scholar
  46. 46.
    El-Gohary, F.A., Badawy, M.I., El-Khateeb, M.A., El-Kalliny, A.S.: Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton’s reaction and anaerobic treatment. J. Hazard. Mater. 162, 1536–1541 (2009)CrossRefGoogle Scholar
  47. 47.
    Dareioti, M.A., Kornaros, M.: Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: effect of hydraulic retention time. Biores. Technol. 175, 553–562 (2015)CrossRefGoogle Scholar
  48. 48.
    Tsintavi, E., Pontillo, N., Dareioti, M.A., Kornaros, M.: Ozone pretreatment of olive mill wastewaters (OMW) and its effect on OMW biochemical methane potential (BMP). Water Sci. Technol. 68, 2712–2717 (2013)CrossRefGoogle Scholar
  49. 49.
    Mulinacci, N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C., Vincieri, F.F.: Polyphenolic content in olive oil waste waters and related olive samples. J. Agric. Food Chem. 49, 3510–3514 (2001)CrossRefGoogle Scholar
  50. 50.
    Romani, A., Mulinacci, N., Pinelli, P., Vincieri, F.F., Cimato, A.: Polyphenolic content in five Tuscany cultivars of Olea europaea L. J. Agric. Food Chem. 47, 964–967 (1999)CrossRefGoogle Scholar
  51. 51.
    Khoddami, A., Wilkes, M.A., Roberts, T.H.: Techniques for analysis of plant phenolic compounds. Molecules 18, 2328–2375 (2013)CrossRefGoogle Scholar
  52. 52.
    Obied, H.K., Allen, M.S., Bedgood, D.R., Prenzler, P.D., Robards, K.: Investigation of Australian olive mill waste for recovery of biophenols. J. Agric. Food Chem. 53, 9911–9920 (2005)CrossRefGoogle Scholar
  53. 53.
    Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J.C., Lorquin, J., Delattre, M., Simon, J.L., Asther, M., Labat, M.: Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75, 501–507 (2001)CrossRefGoogle Scholar
  54. 54.
    Huang, D., Ou, B., Prior, R.L.: The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856 (2005)CrossRefGoogle Scholar
  55. 55.
    Brenes, M., Garcia, A., Garcia, P., Rios, J.J., Garrido, A.: Phenolic compounds in Spanish olive oils. J. Agric. Food Chem. 47, 3535–3540 (1999)CrossRefGoogle Scholar
  56. 56.
    Beccari, M., Bonemazzi, F., Majone, M., Riccardi, C.: Interactions between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Wat. Res. 30, 183–189 (1996)CrossRefGoogle Scholar
  57. 57.
    Hernandez, J.E., Edyvean, R.G.: Anaerobic treatment of phenol in a two-stage anaerobic reactor. In: 7th World congr. chem. engin. GLASGOW 2005, incorp. 5th European congr. chem. eng., p. 8 (2005)Google Scholar
  58. 58.
    Beccari, M., Majone, M., Torrisi, L.: Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents. Water Sci. Technol. 38, 53–60 (1998)CrossRefGoogle Scholar
  59. 59.
    Zagklis, D.P., Vavouraki, A.I., Kornaros, M.E., Paraskeva, C.A.: Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J. Hazard. Mater. 285, 69–76 (2015)CrossRefGoogle Scholar
  60. 60.
    El-Abbassi, A., Kiai, H., Hafidi, A.: Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 132, 406–412 (2012)CrossRefGoogle Scholar
  61. 61.
    Tafesh, A., Najami, N., Jadoun, J., Halahlih, F., Riepl, H., Azaizeh, H. Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. J. Evid.-Based Complement. Alternat. Med. (2011).  https://doi.org/10.1155/2011/431021 CrossRefGoogle Scholar
  62. 62.
    Achak, M., Hafidi, A., Ouazzani, N., Sayadi, S., Mandi, L.: Low cost bio-sorbent for the removal of phenolic compounds from olive mill wastewater. J. Hazard. Mater. 166, 117–125 (2009)CrossRefGoogle Scholar
  63. 63.
    Allouche, N., Fki, I., Sayadi, S.: Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J. Agric. Food Chem. 52, 267–273 (2004)CrossRefGoogle Scholar
  64. 64.
    Azaizeh, H., Halahlih, F., Najami, N., Brunner, D., Faulstich, M., Tafesh, A.: Antioxidant activity of phenolic fractions in olive mill wastewater. Food Chem. 134, 2226–2234 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Aikaterini I. Vavouraki
    • 1
    Email author
  • Maria V. Zakoura
    • 2
    • 3
  • Margarita A. Dareioti
    • 2
  • Michael Kornaros
    • 2
  1. 1.School of Mineral Resources EngineeringTechnical University of CreteChaniaGreece
  2. 2.Chemical Engineering DepartmentUniversity of PatrasPatrasGreece
  3. 3.Institute of Chemical Engineering SciencesICE-HT/FORTHPatrasGreece

Personalised recommendations