Advertisement

Effect of Metal Contaminants and Antioxidants on the Oxidation Stability of Argemone mexicana Biodiesel: Experimental and Statistical Study

  • Mandeep Singh
  • Deepak Kumar Singh
  • Surjit Kumar Gandhi
  • Amit Sarin
  • Sanjeev Saini
  • Sunil Kumar Mahla
  • Ajay Gupta
  • Sarbjot Singh SandhuEmail author
Original Paper
  • 22 Downloads

Abstract

Biodiesel’s auto-oxidation by metal catalyzed decomposition of hydroxides (ROOH) is a major hurdle restricting the commercial viability of biodiesel. This paper investigates the oxidation stability of argemone biodiesel contaminated with transition metals such as: Fe, Ni, Mn, Cu, and Co. Pure argemone oil biodiesel (ABD) has a rancimat induction period of 2.5 h which does not satisfy the ASTM-D6751 and EN-14214 standard limits of 3 and 8 h respectively. The results show that the presence of a metal in argemone oil results in accelerating the free radical oxidation reaction. To meet the desired standards, present work experimentally investigates the effect of various antioxidants like BHT, BHA, TBHQ, PY, and PG in the range of 100–500 ppm on argemone oil biodiesel. Effectiveness order of antioxidants in pure biodiesel was observed as: PY > PG > BHA > BHT > TBHQ. The 500 ppm of most effective antioxidant pyrogallol (PY) has the potential to enhance the induction period of argemone biodiesel above 8 h which is vital by EN-14214 standard. Based on the results of most effective antioxidant PY and varying concentration of metals (Fe, Ni, Mn, Cu, and Co), several correlations have been developed to calculate the induction period of argemone oil biodiesel, as a function of antioxidant and metal concentration.

Graphic Abstract

Keywords

Induction period Argemone mexicana Metal contaminants Antioxidants 

Abbreviations

FAME

Fatty acid methyl ester

ABD

Argemone Biodiesel

SOME

Soybean oil methyl ester

JBD

Jatropha biodiesel

IP

Induction period

TBHQ

Tertiary butylhydroquinone

BHT

Butylated hydroxytoluene

BHA

Butylated hydroxyanisole

PG

Propyl gallate

PY

Pyrogallol

Notes

References

  1. 1.
    Buyukkaya, E.: Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89, 3099–3105 (2010).  https://doi.org/10.1016/j.fuel.2010.05.034 CrossRefGoogle Scholar
  2. 2.
    Ramalingam, S., Rajendran, S., Ganesan, P.: Performance improvement and exhaust emissions reduction in biodiesel operated diesel engine through the use of operating parameters and catalytic converter: a review. Renew. Sustain. Energy Rev. 81, 3215–3222 (2018).  https://doi.org/10.1016/j.rser.2017.08.069 CrossRefGoogle Scholar
  3. 3.
    Statistics, B.P.: British Petroleum, BP statistics review of world energy. 21 (2018)Google Scholar
  4. 4.
    Knothe, G.: The Biodiesel Handbook. AOCS Press, Urbana Illinois (2005)CrossRefGoogle Scholar
  5. 5.
    Pullen, J., Saeed, K.: An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 16, 5924–5950 (2012).  https://doi.org/10.1016/j.rser.2012.06.024 CrossRefGoogle Scholar
  6. 6.
    Xin, J., Imahara, H., Saka, S.: Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel 88, 282–286 (2009).  https://doi.org/10.1016/j.fuel.2008.08.018 CrossRefGoogle Scholar
  7. 7.
    Yaakob, Z., Narayanan, B.N., Padikkaparambil, S., Unni, K.S., Akbar, P.M.: A review on the oxidation stability of biodiesel. Renew. Sustain. Energy Rev. 35, 136–153 (2014).  https://doi.org/10.1016/j.rser.2014.03.055 CrossRefGoogle Scholar
  8. 8.
    Monyem, A., Van Gerpen, J.H.: The effect of biodiesel oxidation on engine performance and emissions. Biomass Bioenerg. 20, 317–325 (2001).  https://doi.org/10.1016/S0961-9534(00)00095-7 CrossRefGoogle Scholar
  9. 9.
    Knothe, G., Dunn, R.O.: Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. JAOCS J. Am. Oil Chem. Soc. 80, 1021–1026 (2003).  https://doi.org/10.1007/s11746-003-0814-x CrossRefGoogle Scholar
  10. 10.
    Waweru, E.J., Pogrebnaya, T., Kivevele, T.T.: Effect of antioxidants extracted from clove wastes and babul tree barks on the oxidation stability of biodiesel made from Water Hyacinth of Lake Victoria Origin. Waste Biomass Valoriz (2019).  https://doi.org/10.1007/s12649-019-00871-y CrossRefGoogle Scholar
  11. 11.
    Sarin, A., Arora, R., Singh, N.P., Sharma, M., Malhotra, R.K.: Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy. 34, 1271–1275 (2009).  https://doi.org/10.1016/j.energy.2009.05.018 CrossRefGoogle Scholar
  12. 12.
    Ryu, K.: Effect of antioxidants on the oxidative stability and combustion characteristics of biodiesel fuels in an indirect injection (IDI) diesel engine. J. Mech. Sci. Technol. 23, 3105–3113 (2009)CrossRefGoogle Scholar
  13. 13.
    Liang, Y.C., May, C.Y., Foon, C.S., Ngan, M.A., Hock, C.C., Basiron, Y.: The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel 85, 867–870 (2006).  https://doi.org/10.1016/j.fuel.2005.09.003 CrossRefGoogle Scholar
  14. 14.
    Knothe, G., Steidley, K.R.: The effect of metals and metal oxides on biodiesel oxidative stability from promotion to inhibition. Fuel Process. Technol. 177, 75–80 (2018).  https://doi.org/10.1016/j.fuproc.2018.04.009 CrossRefGoogle Scholar
  15. 15.
    Kim, D.S., Hanifzadeh, M., Kumar, A.: Trend of biodiesel feedstock and its impact on biodiesel emission characteristics. Environ. Prog. Sustain. Energy. 37, 7–19 (2018).  https://doi.org/10.1002/ep.12800 CrossRefGoogle Scholar
  16. 16.
    Nalgundwar, A., Paul, B., Sharma, S.K.: Comparison of performance and emissions characteristics of di CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel 173, 172–179 (2016).  https://doi.org/10.1016/j.fuel.2016.01.022 CrossRefGoogle Scholar
  17. 17.
    Dhar, A., Agarwal, A.K.: Effect of Karanja biodiesel blends on particulate emissions from a transportation engine. Fuel 141, 154–163 (2015).  https://doi.org/10.1016/j.fuel.2014.09.124 CrossRefGoogle Scholar
  18. 18.
    Parida, M.K., Rout, A.K.: Combustion analysis of Argemone mexicana biodiesel blends. Energy Sour. Part A Recover. Util. Environ. Eff. 39, 698–705 (2017).  https://doi.org/10.1080/15567036.2016.1256918 CrossRefGoogle Scholar
  19. 19.
    Pramanik, P., Das, P., Kim, P.J.: Preparation of biofuel from argemone seed oil by an alternative cost-effective technique. Fuel 91, 81–86 (2012).  https://doi.org/10.1016/j.fuel.2011.07.011 CrossRefGoogle Scholar
  20. 20.
    Anjum, S.S., Prakash, O., Pal, A.: Conversion of non-edible Argemone Mexicana seed oil into biodiesel through the transesterification process. Energy Sour. Part A Recover. Util. Environ. Eff. 00, 1–8 (2018).  https://doi.org/10.1080/15567036.2018.1563244 CrossRefGoogle Scholar
  21. 21.
    Gordon, M.H.: The mechanism of antioxidant action in vitro. Presented at the (1990)Google Scholar
  22. 22.
    Loh, S., Chew, S., Choo, Y.: Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil. J. Am. Oil Chem. Soc. 83, 947–952 (2006)CrossRefGoogle Scholar
  23. 23.
    El Boulifi, N., Bouaid, A., Martinez, M., Aracil, J.: Optimization and oxidative stability of biodiesel production from rice bran oil. Renew. Energy. 53, 141–147 (2013).  https://doi.org/10.1016/j.renene.2012.11.005 CrossRefGoogle Scholar
  24. 24.
    Gurau, V.S., Agarwal, M.S., Sarin, A., Sandhu, S.S.: Experimental study on storage and oxidation stability of bitter apricot kernel oil biodiesel. Energy Fuels 30, 8377–8385 (2016).  https://doi.org/10.1021/acs.energyfuels.6b01676 CrossRefGoogle Scholar
  25. 25.
    Sarin, A., Arora, R., Singh, N.P., Sarin, R., Malhotra, R.K.: Oxidation stability of palm methyl ester: effect of metal contaminants and antioxidants. Energy Fuels 24, 2652–2656 (2010).  https://doi.org/10.1021/ef901172t CrossRefGoogle Scholar
  26. 26.
    Obadiah, A., Kannan, R., Ramasubbu, A., Kumar, S.V.: Studies on the effect of antioxidants on the long-term storage and oxidation stability of Pongamia pinnata (L.) Pierre biodiesel. Fuel Process. Technol. 99, 56–63 (2012).  https://doi.org/10.1016/j.fuproc.2012.01.032 CrossRefGoogle Scholar
  27. 27.
    Sahoo, W.O.O.P.K., Mulaa, J.M.O.F.J.: Effects of antioxidants on oxidation and storage stability of Croton megalocarpus biodiesel. Int. J. Energy Environ. Eng. (2015).  https://doi.org/10.1007/s40095-015-0191-z CrossRefGoogle Scholar
  28. 28.
    Rial, R.C., de Freitas, O.N., dos Santos, G., Nazário, C.E.D., Viana, L.H.: Evaluation of the oxidative and thermal stability of soybean methyl biodiesel with additions of dichloromethane extract ginger (Zingiber officinale Roscoe). Renew. Energy. 143, 295–300 (2019).  https://doi.org/10.1016/j.renene.2019.04.164 CrossRefGoogle Scholar
  29. 29.
    Verma, P., Sharma, M.P., Dwivedi, G.: Investigation of metals and antioxidants on stability characteristics of biodiesel. Mater. Today Proc. 2, 3196–3202 (2015).  https://doi.org/10.1016/j.matpr.2015.07.114 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringDr. B R Ambedkar NITJalandharIndia
  2. 2.Department of Industrial & Production EngineeringDr. B R Ambedkar NITJalandharIndia
  3. 3.Department of Physical SciencesI.K. Gujral Punjab Technical University Main CampusKapurthalaIndia
  4. 4.Department of Mechanical EngineeringDayanand Anglo Vedic Institute of Engineering & TechnologyJalandharIndia
  5. 5.Department of Mechanical EngineeringI.K. Gujral Punjab Technical University Hoshiarpur CampusHoshiarpurIndia

Personalised recommendations