Advertisement

Effect of Heat Treatment on the Properties of Sugarcane Bagasse Medium Density Particleboard (MDP) Panels

  • Débora Pereira Ribeiro
  • Alan Pereira Vilela
  • Danillo Wisky Silva
  • Alfredo Napoli
  • Rafael Farinassi MendesEmail author
Original Paper
  • 29 Downloads

Abstract

Sugarcane bagasse can be used in the manufacture of panels for the furniture industry, but has a high water absorption compared to wood panels. Thus, this raw material needs heat treatment to reduce the hygroscopicity of the panels. The aim of this study was to evaluate the effect of different levels of heat treatment temperature on the particleboard properties made from sugarcane bagasse. The experiment consisted of four treatments, being evaluated three temperatures heat treatment of sugarcane bagasse (170, 200 and 230 °C) and without thermal modification treatment (Control). The particles were evaluated for their anatomical, chemical and physical characteristics. The panels were produced with nominal density of 0.70 g/cm3, relation face/core of 40:60, 11% urea–formaldehyde adhesive to the faces and 7% of adhesive to the core, pressing cycle of 160 °C temperature, pressure 3.94 MPa and for a period of 8 min. The panels were evaluated for its physical properties density, compression ratio, moisture, water absorption and thickness swelling after 2 and 24 h of immersion; their mechanical properties internal bond and modulus of rupture and modulus of elasticity at bending. The heat treatment of the bagasse particles at 230 °C promoted significant improvements in the quality of particleboard, resulting in decreased of the water absorption and thickness swelling values of the panels and increase in modulus of elasticity values, and allowing meet marketing standards regarding the thickness swelling after 24 h of immersion in water. Which demonstrates the great potential of using the heat treatment temperature of 230 °C for the production of particleboard with sugarcane bagasse.

Graphic Abstract

Keywords

Lignocellulosic composites Heat treatment Agricultural waste Dimensional stability 

Notes

Acknowledgements

To the Minas Gerais State Agency for Research and Development (FAPEMIG), National Counsel of Technological and Scientific Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES) and Graduate Program in Biomaterials Engineering of the Federal University of Lavras (UFLA).

References

  1. 1.
    Iwakiri, S., et al.: Produção de painéis aglomerado de alta densificação com uso de resina melanina-uréia-formaldeído. Cerne, Lavras 11(4), 323–328 (2005)Google Scholar
  2. 2.
    Mendes, R.F., et al.: Quality of homogeneous particleboard produced with Eucalyptus urophylla clone wood. Cerne, Lavras 20(2), 329–336 (2014).  https://doi.org/10.1590/01047760.201420021273 CrossRefGoogle Scholar
  3. 3.
    Melo, R.R., et al.: Propriedades físico-mecânicas de painéis aglomerados produzidos com diferentes proporções de madeira e casca de arroz. Ciência Florestal, Santa Maria 19(4), 449–460 (2009).  https://doi.org/10.5902/19805098899 CrossRefGoogle Scholar
  4. 4.
    Mendes, R.F., et al.: The adhesive effect on the properties of particleboards made from sugar cane generated in the distiller. Revista de Ciências Agrárias, Jaboticabal 32(2), 209–218 (2009)Google Scholar
  5. 5.
    Rowell, R.M., Han, J.S., Rowell, J.S.: Characterization and factors effecting fiber properties. In: Frollini, E. (ed.) Natural Polymers and Agrofibers Bases Composites, pp. 115–134. USP/IQSC, São Carlos (2000)Google Scholar
  6. 6.
    Mendes, R.F., et al.: Efeito da associação de bagaço de cana, do tipo e do teor de adesivo na produção de painéis aglomerados. Ciência Florestal, Santa Maria 22(1), 161–170 (2012).  https://doi.org/10.5902/198050985088 CrossRefGoogle Scholar
  7. 7.
    Scatolino, M.V., Costa, A.O., Guimarães Jr., J.B., Protássio, T.P., Mendes, R.F., Mendes, L.M.: Eucalyptus wood and coffee parchment for particleboard production: physical and mechanical properties. Ciência e Agrotecnologia 41(2), 139–214 (2017).  https://doi.org/10.1590/1413-70542017412038616 CrossRefGoogle Scholar
  8. 8.
    Bajwa, D.S., Sitz, E.D., Bajwa, S.G., Barnick, A.R.: Evaluation of cattail (Typha spp.) for manufacturing composite panels. Ind. Crops Prod. 75, 195–199 (2015).  https://doi.org/10.1016/j.indcrop.2015.06.029 CrossRefGoogle Scholar
  9. 9.
    Mendes, R. F., 2008. Utilização do bagaço de cana de alambique na produção de painéis aglomerados. p. 104. Monografia (Graduação em Engenharia Florestal) - Universidade Federal de Lavras, Lavras.Google Scholar
  10. 10.
    Anselmi, R.: Diversificação industrial inclui bioeletricidade, levedura, plástico biodegradável e gás carbônico. Jornal Cana, Tecnologia Industrial, Rio de Janeiro 188, 58–60 (2007)Google Scholar
  11. 11.
    Fiorelli, J., et al.: Sugarcane bagasse and castor oil polyurethane adhesive-based particulate composite. Mater. Res. São Carlos 16(2), 439–446 (2013).  https://doi.org/10.1590/S1516-14392013005000004 CrossRefGoogle Scholar
  12. 12.
    Mendes, R.F., et al.: Efeito da incorporação de casca de café nas propriedades físico-mecânicas de painéis aglomerados de Eucalyptus urophylla ST Blake. Ciência e Agrotecnologia, Lavras 34(3), 610–617 (2010).  https://doi.org/10.1590/S1413-70542010000300012 CrossRefGoogle Scholar
  13. 13.
    Okino, E.Y.A., Teixeira, D.E., Del Menezzi, C.H.S.: Post-thermal treatment of oriented strandboard (OSB) made from Cypress (Cupressus glauca Lam.) Maderas: Ciencia y Tecnologia, Concepcion, 9(3), 199–210 (2007).  https://doi.org/10.4067/S0718-221X2007000300001 CrossRefGoogle Scholar
  14. 14.
    Brito, J.O., et al.: Densidade básica e retrabilidade da madeira de Eucalyptus grandis, submetida a diferentes temperaturas de termorretificação. Cerne, Lavras 12(2), 182–188 (2006)Google Scholar
  15. 15.
    Mendes, R. F.: Efeito do tratamento térmico sobre as propriedades de painéis OSB. p. 115. Dissertação (Mestrado em Engenharia Florestal) - Escola Superior de Agricultura" Luiz de Queiroz", Piracicaba (2011)Google Scholar
  16. 16.
    Nonaka, S., Umemura, K., Kawai, S.: Characterization of bagasse binderless particleboard manufactured in high-temperature range. J. Wood Sci. 59, 50–56 (2013).  https://doi.org/10.1007/s10086-012-1302-6 CrossRefGoogle Scholar
  17. 17.
    Carvalho, A.G., et al.: Effect of post-production heat treatment on particleboard from sugarcane bagasse. Mater. Res. São Carlos 18(1), 78–84 (2015).  https://doi.org/10.1590/1516-1439.270814 CrossRefGoogle Scholar
  18. 18.
    Del Menezzi, C.H.S., De Souza, R.Q., Thompson, R.M., et al.: Properties after weathering and decay resistance of a thermally modified wood structural board. Int. Biodeterior. Biodegrad. Barking 62(4), 448–454 (2008).  https://doi.org/10.1016/j.ibiod.2007.11.010 CrossRefGoogle Scholar
  19. 19.
    Del Menezzi, C.H.S.: Estabilização dimensional por meio do tratamento térmico e seus efeitos sobre as propriedades de painéis de partículas orientadas (OSB). p. 226. Tese (Doutorado em Engenharia Florestal) – Universidade Federal do Paraná, Curitiba (2004)Google Scholar
  20. 20.
    Del Menezzi, C.H.S., Tomaselli, I.: Contact thermal posttreatment of oriented strandboard to improve dimensional stability: a preliminary study. Holz als Roh- und Werkstoff, Berlin 64(3), 212–217 (2006).  https://doi.org/10.1007/s00107-005-0052-1 CrossRefGoogle Scholar
  21. 21.
    Lára Santos, A.M., et al.: Efeito do tratamento térmico sobre a resistência ao cisalhamento da linha de cola em painéis OSB. Ciência Florestal, Santa Maria 19(1), 31–40 (2009).  https://doi.org/10.5902/19805098417 CrossRefGoogle Scholar
  22. 22.
    Winandy, J.E., Krzysik, A.M.: Thermal degradation of wood fibers during hot pressing of MDF composites: Part I. Relative effects and benefits of thermal exposure. Wood Fiber Sci. Madison, 39(3), 450–461 (2007)Google Scholar
  23. 23.
    Paul, W., Ohlmeyer, M., Leithoff, H.: Thermal modification of OSB-strands by a one-step heat pre-treatment: influence of temperature on weight loss, hygroscopicity and improved fungal resistance. Holz als Roh-und Werkstoff, Berlin 65, 57–63 (2007).  https://doi.org/10.1007/s00107-006-0146-4 CrossRefGoogle Scholar
  24. 24.
    Associação Brasileira de Normas Técnicas.: NBR 7989: pasta celulósica e madeira—determinação de lignina insolúvel em ácido. Associação Brasileira de Normas Técnicas, Rio de Janeiro (2010a)Google Scholar
  25. 25.
    Associação Brasileira de Normas Técnicas.: NBR 14853: madeira - determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona. Associação Brasileira de Normas Técnicas, Rio de Janeiro (2010b)Google Scholar
  26. 26.
    Associação Brasileira de Normas Técnicas.: NBR 13999: papel, cartão, pastas celulósicas e madeira - determinação do resíduo (cinza) após a incineração a 525 °C. Associação Brasileira de Normas Técnicas, Rio de Janeiro (2003b)Google Scholar
  27. 27.
    Santos, A.L.O.: Avaliação do potencial de uso e caracterização tecnológica das fibras de Saccharum spp. para produção de celulose e papel. p. 39. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Florestal) - Universidade de Brasília, Brasília (2014)Google Scholar
  28. 28.
    Triana, O., et al.: Atlas del bagazo de la caña de azucar, p. 143. Geplacea, México (1990)Google Scholar
  29. 29.
    Mendes, R.F., et al.: Effects of thermal pre-treatment and variables of production on properties of OSB panels of Pinus taeda. Maderas. Ciencia y Tecnología, San José, 15(2), 141–152 (2013a) DOI: 10.4067/S0718-221X2013005000012 https://doi.org/10.4067/S0718-221X2013005000012 CrossRefGoogle Scholar
  30. 30.
    Mendes, R.F., et al.: Effect of thermal treatment on properties of OSB panels. Wood Sci. Technol. New York 47(2), 243–256 (2013b).  https://doi.org/10.1007/s00226-012-0494-7 CrossRefGoogle Scholar
  31. 31.
    Stamm, A.J., Burr, H.K., Kline, A.A.: Stayb wood. Heat-stabilized wood. Ind. Eng. Chem. Washington, 38(6), 630–634 (1946)CrossRefGoogle Scholar
  32. 32.
    Figueroa, M.J.M., Morais, P.D.: Comportamento da madeira a temperaturas elevadas. Ambiente Construido, Porto Alegre 9(4), 157–174 (2009)Google Scholar
  33. 33.
    Hakkou, M., et al.: Investigations of the reasons for fungal durability of heat-treated beech wood. Polym. Degrad. Stab. Essex 91(2), 393–397 (2006).  https://doi.org/10.1016/j.polymdegradstab.2005.04.042 CrossRefGoogle Scholar
  34. 34.
    Esteves, B., Graça, J., Pereira, H.: Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschng, Berlin 62, 344–351 (2008).  https://doi.org/10.1515/HF.2008.057 CrossRefGoogle Scholar
  35. 35.
    Protásio, T.P., et al.: Thermal stability of particleboards of sugar cane bagasse and Pinus spp. Wood Sci. Technol. New York 43(107), 683–691 (2015)Google Scholar
  36. 36.
    Guimarães, J.L., et al.: Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind. Crop Prod. St Martin d'Heres 30, 407–415 (2009).  https://doi.org/10.1016/j.indcrop.2009.07.013 CrossRefGoogle Scholar
  37. 37.
    Philippini, R. R.: Variedades híbridas de bagaço de cana-de-açúcar: caracterização química e hidrólise enzimática em condições de pré-tratamento difrenciadas. p. 87. Dissertação (Mestrado em Biotecnologia Industrial) - Universidade de São Paulo, Lorena ( 2012)Google Scholar
  38. 38.
    Vital, B.R., Trugilho, P.F.: Variação dimensional e uso da madeira de Eucalyptus. Informe Agropecuário, Belo Horizonte 18(186), 57–61 (1997)Google Scholar
  39. 39.
    Barros Filho, R.M.: Painéis aglomerados a base de bagaço de cana-de-açúcar e resinas ureia-formaldeído e melamina-formaldeído. 2009. p. 99. Dissertação (Mestrado em Engenharia de Materiais) – Universidade Federal de Ouro Preto, Ouro Preto (2009)Google Scholar
  40. 40.
    Conte, B., et al.: Propriedades físicas e colorimétricas da madeira termorretificada de Pinus elliottii var. elliottii. Scientia Agricola, Piracicaba, 42(104), 555–563 (2014).Google Scholar
  41. 41.
    Vital, B.R., et al.: Estabilidade dimensional e resistência à tração perpendicular de painéis fabricados com partículas termorretificadas oriundas de embalagens de pinus sp. Revista Árvore, Viçosa, MG 38(5), 951–959 (2014)CrossRefGoogle Scholar
  42. 42.
    Tjeerdsma, B.F., et al.: Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, Berlin 56(3), 149–153 (1998).  https://doi.org/10.1007/s001070050287 CrossRefGoogle Scholar
  43. 43.
    Tjeerdsma, B.F., Militz, H.: Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh-und Werkstoff, Berlin 63, 102–111 (2005).  https://doi.org/10.1007/s00107-004-0532-8 CrossRefGoogle Scholar
  44. 44.
    Scatolino, M.V., et al.: Use of maize cob for production of particleboard. Ciência e Agrotecnologia, Lavras 37(4), 330–337 (2013).  https://doi.org/10.1590/S1413-70542013000400006 CrossRefGoogle Scholar
  45. 45.
    Silva, D.W., Farrapo, C.P., Ribeiro, D.P., et al.: MDP com partículas de eucalipto e palha de milho. Scientia Forestalis, Piracicaba 43(108), 853–862 (2015).  https://doi.org/10.18671/scifor.v43n108.10 CrossRefGoogle Scholar
  46. 46.
    Vernois, M.: Heat treatment of wood in France: state of the art. In: Special Seminar: Environmental Optimisation of Wood Protection, 1., 2001, Antibes, Proceedings… Antibes: [s. n.], p. 39–46 (2001)Google Scholar
  47. 47.
    Mendes, L.M., et al.: Lignocellulosic composites made from agricultural and forestry wastes in Brazil. Key Eng. Mater. 517, 556–563 (2012).  https://doi.org/10.4028/www.scientific.net/KEM.517.556 CrossRefGoogle Scholar
  48. 48.
    Kelly, M.W.: A Critical Literature Review of Relationships Between Processing Parameters and Physical Properties of Particleboards, p. 65. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison (1977)Google Scholar
  49. 49.
    Repellin, V., Guyonnet, R.: Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung, Berlin 59, 28–34 (2005).  https://doi.org/10.1515/HF.2005.005 CrossRefGoogle Scholar
  50. 50.
    Barros Filho, R.M., et al.: Hybrid chipboard panels based on sugarcane bagasse, urea formaldehyde and melamine formaldehyde resin. Ind. Crops Prod. 33, 369–373 (2011).  https://doi.org/10.1016/j.indcrop.2010.11.007 CrossRefGoogle Scholar
  51. 51.
    Tabarsa, T., Ashori, A., Gholamzadeh, M.: Evaluation of surface roughness and mechanical properties of particleboard panels made from bagasse. Compos. B 42(5), 1330–1335 (2011).  https://doi.org/10.1016/j.compositesb.2010.12.018 CrossRefGoogle Scholar
  52. 52.
    Sernek, M., Kamke, A.F., Glasser, W.G.: Comparative analysis of inactivated wood surface. Holzforschung, Berlin 58, 22–31 (2004).  https://doi.org/10.1515/HF.2004.004 CrossRefGoogle Scholar
  53. 53.
    Maloney, T. M., 1993. Modern particleboard and dry-process fiber board manufacture. San Francisco: M. Freeman, v. 2, 689 p.Google Scholar
  54. 54.
    Kubojima, Y., Okano, T., Ohta, M.: Bending strength and toughness of heart-treated wood. Wood Sci. Technol. New York 46(1), 8–15 (2000).  https://doi.org/10.1007/BF00779547 CrossRefGoogle Scholar
  55. 55.
    Santos, J.A.: Mechanical behaviour of eucalyptus wood modified by heat. Wood Sci. Technol. New York 34, 39–43 (2000).  https://doi.org/10.1007/s002260050006 CrossRefGoogle Scholar
  56. 56.
    Tsoumis, G.: Science and Technology of Wood: Structure, Properties, Utilization, p. 494. Chapman & Hall, New York (1991)Google Scholar
  57. 57.
    Kocaefe, D., Poncsak, S., Boluk, Y.: Effect of thermal treatment on the mechanical composition and mechanical properties of Birch and Aspen. Bioresour. Technol. Oxford 3, 517–537 (2008)Google Scholar
  58. 58.
    Widyorini, R., et al.: Manufacture and properties of binderless particleboard from bagasse I: effects of raw material type, storage methods, and manufacturing process. J. Wood Sci. Heidelberg 51(6), 648–654 (2005).  https://doi.org/10.1007/s10086-005-0713-z CrossRefGoogle Scholar
  59. 59.
    American National Standards Institute.: ANSI A208.1: matformed wood particleboard: speciication. American National Standards Institute, Gaithersburg (1999)Google Scholar
  60. 60.
    American Society for Testing and Materials.: ASTM D1037- 06a: standard test methods for evaluating properties of wood-base fiber and particle panel materials. American Society for Testing and Materials, Philladelphia (2012)Google Scholar
  61. 61.
    Associação Brasileira de Normas Técnicas.: NBR 11941: madeira: determinação da densidade básica. Associação Brasileira de Normas Técnicas, Rio de Janeiro (2003a)Google Scholar
  62. 62.
    Associação Brasileira de Normas Técnicas.: NBR 14810-2: painéis de partículas de média densidade - parte 2 - requisitos e métodos de ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro (2013)Google Scholar
  63. 63.
    European Committee for Standardization: EN 312: Particleboard - Specifications. European Committee for Standardization, Bruxelas (1993)Google Scholar
  64. 64.
    Normen Für Holzfaserplaten Spanplatten Sperrholz.: DIN 52362. In: Testing of wood chipboards bending test, determination of bending strength. pp. 39–40. Berlin (1982)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Débora Pereira Ribeiro
    • 1
  • Alan Pereira Vilela
    • 1
  • Danillo Wisky Silva
    • 1
  • Alfredo Napoli
    • 2
  • Rafael Farinassi Mendes
    • 3
    Email author
  1. 1.Graduate Program in Biomaterials Engineering - Universidade Federal de Lavras, UFLALavrasBrazil
  2. 2.Researcher CIRAD (La recherche agronomique pour le développement)ParisFrance
  3. 3.Engineering Department – Universidade Federal de Lavras, UFLALavrasBrazil

Personalised recommendations