Production of Bio-based Polyol from Oxypropylated Pyrolytic Lignin for Rigid Polyurethane Foam Application

  • Thana Saffar
  • Hassine Bouafif
  • Flavia Lega BraghiroliEmail author
  • Sara Magdouli
  • Armand Langlois
  • Ahmed Koubaa
Original Paper


A recent trend in ecofriendly product development is the use of added-value lignin residues. This study aimed to assess the potential use of pyrolytic lignin (PL) for producing rigid polyurethane foam (RPUF). For this purpose, PL was recovered from bio-oil using water as extraction solvent. The PL was then subjected to oxypropylation in the presence of KOH and under mild temperature and pressure (482 K; 14 Bar). FTIR and hydroxyl number quantification was used to confirm and assess the occurrence of oxypropylation reaction. Thus, oxypropylated lignin (OL) was successfully used to produce RPUF. Results revealed a lignin recovery yield of 30 ± 4% relative to the bio-oil weight. FTIR and NMR showed that the PL retained its aromatic structure after pyrolysis cracking. The weight ratio obtained after oxypropylation was 50/50/5 lignin/propylene oxide/KOH with a hydroxyl number of 703 mg KOH/g. Gradual substitution of polyol with OL ranged from 10 to 50%, and the ensuing foams were characterized in terms of chemical, physical, and morphological properties. Modulus of elasticity and insulation performance of 20% OL-based foam increased by 17% and 5.5%, respectively, compared to the commercial rigid polyurethane foam (CRPUF). SEM micrographs for OL-based polyurethane foams showed smaller cell structure, which is desirable for increasing rigidity. These findings demonstrate the potential use of pyrolytic lignin in the manufacturing of high performance biobased insulation materials.

Graphic Abstract


Bio-sourced materials Rigid polyurethane foams Bio-based polyol Pyrolytic bio-oil Pyrolytic lignin Oxypropylation 



American Society for Testing and Materials


Commercial rigid polyurethane foam


Derivative thermogravimetry


Fourier Transform InfraRed Spectroscopy


Fourier transform infrared spectroscopy in attenuated total reflection


Potassium hydroxide




Lignosulfonate-based polyurethane foam


Sodium hydroxide


Nuclear magnetic resonance


Oxypropylated lignin


Oxypropylated lignin-based polyurethane foam


Pyrolytic lignin


Propylene oxide




Rigid polyurethane


Rigid polyurethane foam


Scanning electron microscopy


Thermogravimetric analysis





Sincere thanks are due to the National Sciences and Engineering Research Council of Canada (Project Number: 499133), the Centre Technologique des Résidus Industriels, the Chaire de Recherche de la Valorisation de la Caractérisation et de la Transformation du Bois, EnerLab, and AbriTech for their in-kind and financial contribution, which enabled us to conduct this study. The authors gratefully acknowledge the assistance of Gilles Villeneuve during the experiments. The views and opinions expressed in this paper are those of the authors.


  1. 1.
    Ashida, K.: Polyurethane and related foams: chemistry and technology. CRC Press, New York (2006)CrossRefGoogle Scholar
  2. 2.
    Randall, D., Lee, S.: The polyurethanes book. Wiley, New York (2002)Google Scholar
  3. 3.
    Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N., Singh, S.K., Hodge, D.B., Nejad, M.: Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers 11, 1202 (2019)CrossRefGoogle Scholar
  4. 4.
    Szycher, M.: Szycher’s handbook of polyurethanes. CRC Press, New York (2012)CrossRefGoogle Scholar
  5. 5.
    Ning, H., Janowski, G.M., Vaidya, U.K., Husman, G.: Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct. 80, 82–91 (2007)CrossRefGoogle Scholar
  6. 6.
    Ionescu, M.: Chemistry and Technology of Polyols for Polyurethanes. RAPRA, Anglia (2006)Google Scholar
  7. 7.
    Tan, S., Abraham, T., Ference, D., Macosko, C.W.: Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52, 2840–2846 (2011)CrossRefGoogle Scholar
  8. 8.
    Da Silva, V.R., Mosiewicki, M.A., Yoshida, M.I., Da Silva, M.C., Stefani, P.M., Marcovich, N.E.: Polyurethane foams based on modified tung oil and reinforced with rice husk ash I: synthesis and physical chemical characterization. Polym. Testing 32, 438–445 (2013)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Ren, H., Ragauskas, A.J.: Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties. J. Nanosci. Nanotechnol. 11, 6904–6911 (2011)CrossRefGoogle Scholar
  10. 10.
    Pan, X., Saddler, J.N.: Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol. Biofuels 6, 12 (2013)CrossRefGoogle Scholar
  11. 11.
    Adler, E.: Lignin chemistry—past, present and future. Wood Sci. Technol. 11, 169–218 (1977)CrossRefGoogle Scholar
  12. 12.
    Windeisen, E., Moeller, M., Matyjaszewski, K.: Lignin as building unit for polymers polymer science. In: Matyjaszewski, K., Möller, M. (eds.) Polymer Science: A Comprehensive Reference, pp. 255–265. Elsevier, Amsterdam (2012)CrossRefGoogle Scholar
  13. 13.
    Santos, R.B., Capanema, E.A., Balakshin, M.Y., Chang, H.-M., Jameel, H.: Effect of hardwoods characteristics on kraft pulping process: emphasis on lignin structure. BioResources 6, 3623–3637 (2011)Google Scholar
  14. 14.
    da Silva, E.B., Zabkova, M., Araújo, J.D., Cateto, C.A., Barreiro, M.F., Belgacem, M.N., Rodrigues, A.E.: An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem. Eng. Res. Des. 87, 1276–1292 (2009)CrossRefGoogle Scholar
  15. 15.
    Tejado, A., Pena, C., Labidi, J., Echeverria, J.M., Mondragon, I.: Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 98, 1655–1663 (2007)CrossRefGoogle Scholar
  16. 16.
    Domenek, S., Louaifi, A., Guinault, A., Baumberger, S.: Potential of lignins as antioxidant additive in active biodegradable packaging materials. J. Polym. Environ. 21, 692–701 (2013)CrossRefGoogle Scholar
  17. 17.
    De Chirico, A., Armanini, M., Chini, P., Cioccolo, G., Provasoli, F., Audisio, G.: Flame retardants for polypropylene based on lignin. Polym. Degrad. Stab. 79, 139–145 (2003)CrossRefGoogle Scholar
  18. 18.
    Pouteau, C., Baumberger, S., Cathala, B., Dole, P.: Lignin–polymer blends: evaluation of compatibility by image analysis. C.R. Biol. 327, 935–943 (2004)CrossRefGoogle Scholar
  19. 19.
    Garcia-Perez, M., Chaala, A., Pakdel, H., Kretschmer, D., Roy, C.: Characterization of bio-oils in chemical families. Biomass Bioenergy 31, 222–242 (2007)CrossRefGoogle Scholar
  20. 20.
    Lee, W.-J., Chang, K.-C., Tseng, I.-M.: Properties of phenol-formaldehyde resins prepared from phenol-liquefied lignin. J. Appl. Polym. Sci. 124, 4782–4788 (2012)Google Scholar
  21. 21.
    Sukhbaatar, B., Steele, P.H., Ingram, L.I., Kim, M.G.: Use of lignin separated from bio-oil in oriented strand board binder phenol-formaldehyde resins. BioResources 4, 789–804 (2009)Google Scholar
  22. 22.
    Kudanga, T., Prasetyo, E.N., Sipilä, J., Guebitz, G.M., Nyanhongo, G.S.: Reactivity of long chain alkylamines to lignin moieties: implications on hydrophobicity of lignocellulose materials. J. Biotechnol. 149, 81–87 (2010)CrossRefGoogle Scholar
  23. 23.
    Zhang, L., Huang, J.: Effects of hard-segment compositions on properties of polyurethane–nitrolignin films. J. Appl. Polym. Sci. 81, 3251–3259 (2001)CrossRefGoogle Scholar
  24. 24.
    Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Belgacem, M.N.: Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind. Eng. Chem. Res. 48, 2583–2589 (2009)CrossRefGoogle Scholar
  25. 25.
    Li, Y., Ragauskas, A.J.: Kraft lignin-based rigid polyurethane foam. J. Wood Chem. Technol. 32, 210–224 (2012)CrossRefGoogle Scholar
  26. 26.
    Nadji, H., Bruzzese, C., Belgacem, M.N., Benaboura, A., Gandini, A.: Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng. 290, 1009–1016 (2005)CrossRefGoogle Scholar
  27. 27.
    Mahmood, N., Yuan, Z., Schmidt, J., Xu, C.: Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew. Sustain. Energy Rev. 60, 317–329 (2016)CrossRefGoogle Scholar
  28. 28.
    Mahmood, N., Yuan, Z., Schmidt, J., Tymchyshyn, M., Xu, C.: (Charles): Hydrolytic liquefaction of hydrolysis lignin for the preparation of bio-based rigid polyurethane foam. Green Chem. 18, 2385–2398 (2016). CrossRefGoogle Scholar
  29. 29.
    Scholze, B., Meier, D.: Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrolysis 60, 41–54 (2001)CrossRefGoogle Scholar
  30. 30.
    Gandini, A., Belgacem, M.N.: Partial or total oxypropylation of natural polymers and the use of the ensuing materials as composites or polyol macromonomers. In: Gandini, A., Belgacem, M.N. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 273–288. Elsevier, Oxford (2008)CrossRefGoogle Scholar
  31. 31.
    Gandini, A., Belgacem, M.N.G., Montanari, S.: Lignins as macromonomers for polyesthers and polyurethanes. In: Hu, T.Q. (ed.) Chemical Modification, Properties, and Usage of Lignin. Academic/Plenum Publishers, New York (2002)Google Scholar
  32. 32.
    Hu, S., Luo, X., Li, Y.: Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. Chemsuschem 7, 66–72 (2014)CrossRefGoogle Scholar
  33. 33.
    Pavier, C., Gandini, A.: Oxypropylation of sugar beet pulp. 1. Optimisation of the reaction. Ind. Crops Prod. 12, 1–8 (2000)CrossRefGoogle Scholar
  34. 34.
    Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38, 68–94 (2012)CrossRefGoogle Scholar
  35. 35.
    Žilnik, L.F., Jazbinšek, A.: Recovery of renewable phenolic fraction from pyrolysis oil. Sep. Purif. Technol. 86, 157–170 (2012)CrossRefGoogle Scholar
  36. 36.
    Robinson, T.J.: Box-Behnken Designs. In: Ruggeri, F., Kenett, R.S., Faltin, F.W. (eds.) Encyclopedia of Statistics in Quality and Reliability. Wiley, Chichester (2008)Google Scholar
  37. 37.
    Mahmood, N., Yuan, Z., Schmidt, J., Xu, C.C.: Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized Kraft lignin via direct replacement or oxypropylation. Eur. Polym. J. 68, 1–9 (2015)CrossRefGoogle Scholar
  38. 38.
    Sahoo, S., Seydibeyoğlu, M., Mohanty, A.K., Misra, M.: Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35, 4230–4237 (2011)CrossRefGoogle Scholar
  39. 39.
    Schorr, D., Diouf, P.N., Stevanovic, T.: Evaluation of industrial lignins for biocomposites production. Ind. Crops Prod. 52, 65–73 (2014)CrossRefGoogle Scholar
  40. 40.
    Jiang, X., Ellis, N., Zhong, Z.: Characterization of pyrolytic lignin extracted from bio-oil. Chin. J. Chem. Eng. 18, 1018–1022 (2010)CrossRefGoogle Scholar
  41. 41.
    Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)CrossRefGoogle Scholar
  42. 42.
    Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D., Mitchell, B., Mohammad, J., Cantrell, K., Pittman Jr., C.U.: Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy Fuels 22, 614–625 (2007)CrossRefGoogle Scholar
  43. 43.
    Scholze, B., Hanser, C., Meier, D.: Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part II. GPC, carbonyl goups, and 13C-NMR. J. Anal. Appl. Pyrolysis 58, 387–400 (2001)CrossRefGoogle Scholar
  44. 44.
    Daniel, J., Hayes, S.F.: The biofine process—production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Wiley (ed.) Biorefineries–Industrial Processes and Products, pp. 139–164. Wiley, Germany (2006)Google Scholar
  45. 45.
    Nimz, H.H., Robert, D., Faix, O., Nemr, M.: Carbon-13 NMR spectra of lignins, 8. Structural differences between lignins of hardwoods, softwoods, grasses and compression wood. Holzforschung Int. J. Biol. Chem. Phys. Technol. Wood 35, 16–26 (1981)Google Scholar
  46. 46.
    Mullen, C.A., Boateng, A.A.: Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. J. Anal. Appl. Pyrol. 90, 197–203 (2011)CrossRefGoogle Scholar
  47. 47.
    Wang, S., Wang, Y., Cai, Q., Wang, X., Jin, H., Luo, Z.: Multi-step separation of monophenols and pyrolytic lignins from the water-insoluble phase of bio-oil. Sep. Purif. Technol. 122, 248–255 (2014)CrossRefGoogle Scholar
  48. 48.
    Tiainen, E., Drakenberg, T., Tamminen, T., Kataja, K., Hase, A.: Determination of phenolic hydroxyl groups in lignin by combined use of 1H NMR and UV spectroscopy. Holzforschung 53, 529–533 (1999)CrossRefGoogle Scholar
  49. 49.
    Brebu, M., Vasile, C.: Thermal degradation of lignin—a review. Cell. Chem. Technol. 44, 353–363 (2010)Google Scholar
  50. 50.
    Bernardini, J., Cinelli, P., Anguillesi, I., Coltelli, M.-B., Lazzeri, A.: Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J. 64, 147–156 (2015)CrossRefGoogle Scholar
  51. 51.
    Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Belgacem, M.N.: Kinetic study of the formation of lignin-based polyurethanes in bulk. React. Funct. Polym. 71, 863–869 (2011)CrossRefGoogle Scholar
  52. 52.
    Bonini, C., D’Auria, M., Emanuele, L., Ferri, R., Pucciariello, R., Sabia, A.R.: Polyurethanes and polyesters from lignin. J. Appl. Polym. Sci. 98, 1451–1456 (2005)CrossRefGoogle Scholar
  53. 53.
    Coleman, M.M., Lee, K.H., Skrovanek, D.J., Painter, P.C.: Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19, 2149–2157 (1986)CrossRefGoogle Scholar
  54. 54.
    Sormana, J.-L., Meredith, J.C.: High-throughput discovery of structure–mechanical property relationships for segmented poly (urethane–urea) s. Macromolecules 37, 2186–2195 (2004)CrossRefGoogle Scholar
  55. 55.
    Chen, T.-K., Tien, Y.-I., Wei, K.-H.: Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41, 1345–1353 (2000)CrossRefGoogle Scholar
  56. 56.
    Simon, J., Barla, F., Kelemen-Haller, A., Farkas, F., Kraxner, M.: Thermal stability of polyurethanes. Chromatographia 25, 99–106 (1988)CrossRefGoogle Scholar
  57. 57.
    Hayati, A.N., Evans, D.A.C., Laycock, B., Martin, D.J., Annamalai, P.K.: A simple methodology for improving the performance and sustainability of rigid polyurethane foam by incorporating industrial lignin. Ind. Crops Prod. 117, 149–158 (2018)CrossRefGoogle Scholar
  58. 58.
    Zhang, X., Jeremic, D., Kim, Y., Street, J., Shmulsky, R.: Effects of surface functionalization of lignin on synthesis and properties of rigid bio-based polyurethanes foams. Polymers 10, 706 (2018). CrossRefGoogle Scholar
  59. 59.
    Cateto, C.A., Barreiro, M.F., Ottati, C., Lopretti, M., Rodrigues, A.E., Belgacem, M.N.: Lignin-based rigid polyurethane foams with improved biodegradation. J. Cell. Plast. 50, 81–95 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Thana Saffar
    • 1
    • 2
  • Hassine Bouafif
    • 2
  • Flavia Lega Braghiroli
    • 2
    Email author
  • Sara Magdouli
    • 2
  • Armand Langlois
    • 3
  • Ahmed Koubaa
    • 1
  1. 1.Research Forest Institute (Institut de recherche sur les forêts – IRF), University of Québec in Abitibi-Témiscamingue (UQAT)Rouyn-NorandaCanada
  2. 2.Centre Technologique des Résidus Industriels (CTRI, Technology Center for Industrial Waste), Cégep de l’Abitibi-Témiscamingue (College of Abitibi-Témiscamingue)Rouyn-NorandaCanada
  3. 3.EnerLab, 1895 Chemin de l’IndustrieSaint-Mathieu-de-BeloeilCanada

Personalised recommendations