Advertisement

Improvements of Thermal and Thermochemical Properties of Rosin by Chemical Transformation for Its Use as Biofuel

  • Duban García
  • Felipe Bustamante
  • Edwin Alarcón
  • Juan Miguel Donate
  • Laureano Canoira
  • Magín LapuertaEmail author
Original Paper
  • 36 Downloads

Abstract

The use of raw materials from renewable sources has become an important topic for different industries. Pine oleoresin is one of the most important renewable sources. It is composed of a broad range of chemical substances from volatile molecules to complex compounds. The resinic fraction, known as rosin or colophony, comprises approximately 80% of oleoresin. This fraction has become the most attractive one from the economic standpoint. Rosin is a complex mixture of diterpenic acids and is typically used in formulation of adhesives, coating materials, rubbers, printing inks, among others. Although their transformations have been studied, scarce information on the thermal and thermochemical properties of rosin and rosin-derived products has been reported. In this work some of these properties have been estimated to evaluate the influence of chemical transformations such as reduction, isomerization and esterification of rosin components. The estimations have been compared to the literature data and to some experimental values. The interest of some of these transformations is based on the reduction in melting and boiling temperatures observed, although such reductions are probably not enough to use these substances as fuel components.

Graphic Abstract

Keywords

Rosin Isomerization Reduction Esterification Properties estimation 

Notes

Acknowledgements

Colciencias is gratefully acknowledged for the scholarship (call 272 of 2015) supporting D.G and project 37-1-693 (ref. FP44842-124-2017). Universidad de Antioquia is acknowledged for the research project PRG2014-1091.

References

  1. 1.
    Yadav, B.K., Gidwani, B., Vyas, A.: Rosin: recent advances and potential applications in novel drug delivery system. J. Bioact. Compat. Polym. 31, 111–126 (2016).  https://doi.org/10.1177/0883911515601867 CrossRefGoogle Scholar
  2. 2.
    Höfer, R.: Chapter 3B—the pine biorefinery platform chemicals value chain. In: Pandey, A., Höfer, R., Taherzadeh, M., Nampoothiri, K.M., Larroche, C. (eds.) Industrial Biorefineries & White Biotechnology. Elsevier, Amsterdam (2015)Google Scholar
  3. 3.
    Wideman, L.G., Kuczkowski, J.A.: Decarboxylation of rosin acids, EU Patent No. 0149958A2, (1985)Google Scholar
  4. 4.
    Silvestre AJD (2008) Chapter 4—rosin: major sources, properties and applications. In: Monomers, Polymers and Composites from Renewable Resources. Elsevier, AmsterdamCrossRefGoogle Scholar
  5. 5.
    Souto, J.C., Yustos, P., Ladero, M., Garcia-Ochoa, F.: Disproportionation of rosin on an industrial Pd/C catalyst: Reaction pathway and kinetic model discrimination. Bioresour. Technol. 102, 3504–3511 (2011).  https://doi.org/10.1016/j.biortech.2010.11.022 CrossRefGoogle Scholar
  6. 6.
    Wang, L., Chen, X., Liang, J., Chen, Y., Pu, X., Tong, Z.: Kinetics of the catalytic isomerization and disproportionation of rosin over carbon-supported palladium. Chem. Eng. J. 152, 242–250 (2009).  https://doi.org/10.1016/j.cej.2009.04.052 CrossRefGoogle Scholar
  7. 7.
    Clark, I.T., Harris, E.E.: Catalytic cracking of rosin 2. J. Am. Chem. Soc. 74, 1030–1032 (1952).  https://doi.org/10.1021/ja01124a046 CrossRefGoogle Scholar
  8. 8.
    Bernas, A., Salmi, T., Murzin, D.Y., Mikkola, J.-P., Rintola, M.: Catalytic transformation of abietic acid to hydrocarbons. Top. Catal. 55, 673–679 (2012).  https://doi.org/10.1007/s11244-012-9846-7 CrossRefGoogle Scholar
  9. 9.
    Mikulec, J., Kleinová, A., Cvengroš, J., Joríková, L., Banič, M.: Catalytic transformation of tall oil into biocomponent of diesel fuel. Int. J. Chem. Eng. 2012, 1–9 (2012).  https://doi.org/10.1155/2012/215258 CrossRefGoogle Scholar
  10. 10.
    Lappi, H.E., Alén, R.J.: Pyrolysis of cruded tall oil-derived products. BioResources 6, 5121–5138 (2011)Google Scholar
  11. 11.
    Coll, R., Udas, S., Jacoby, W.A.: Production of diesel fuel additives from the rosin acid fraction of crude tall oil. Prog. Thermochem. Biomass. Convers. (2001).  https://doi.org/10.1002/9780470694954.ch127 CrossRefGoogle Scholar
  12. 12.
    Wilbon, P.A., Chu, F., Tang, C.: Progress in renewable polymers from natural terpenes, terpenoids and rosin. Macromol. Rapid Commun. 34, 8–37 (2013).  https://doi.org/10.1002/marc.201200513 CrossRefGoogle Scholar
  13. 13.
    Ojagh, H., Creaser, D., Salam, M.A., Grennfelt, E.L., Olsson, L.: Hydroconversion of abietic acid into value-added fuel components over sulfided NiMo catalysts with varying support acidity. Fuel Process. Technol. 190, 55–66 (2019).  https://doi.org/10.1016/j.fuproc.2019.03.008 CrossRefGoogle Scholar
  14. 14.
    Gao, Y., Li, L., Chen, H., Li, J., Song, Z., Shang, S., Song, J., Wang, Z., Xiao, G.: High value-added application of rosin as a potential renewable source for the synthesis of acrylopimaric acid-based botanical herbicides. Ind. Crops Prod. 78, 131–140 (2015).  https://doi.org/10.1016/j.indcrop.2015.10.032 CrossRefGoogle Scholar
  15. 15.
    Kazakov, A., Muzny, C.D., Chirico, R.D., Diky, V.V., Frenkel, M.: Web Thermo Tables—an on-line version of the TRC thermodynamic tables. J. Res. Natl. Inst. Stand. Technol. 113, 209 (2012).  https://doi.org/10.6028/jres.113.016 CrossRefGoogle Scholar
  16. 16.
    Bhattacharya, A., Shivalkar, S.: Re-tooling Benson’s group additivity method for estimation of the enthalpy of formation of free radicals: C/H and C/H/O Groups. J. Chem. Eng. Data. 51, 1169–1181 (2006).  https://doi.org/10.1021/je0503960 CrossRefGoogle Scholar
  17. 17.
    Janbazi, H., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I., Peukert, S.: Response surface and group additivity methodology for estimation of thermodynamic properties of organosilanes. Int. J. Chem. Kinet. 50, 681–690 (2018).  https://doi.org/10.1002/kin.21192 CrossRefGoogle Scholar
  18. 18.
    Domalski, E.S., Hearing, E.D.: Estimation of the thermodynamic properties of hydrocarbons at 298.15 K. J. Phys. Chem. Ref. Data. 17, 1637–1678 (1988).  https://doi.org/10.1063/1.555814 CrossRefGoogle Scholar
  19. 19.
    Roganov, G.N., Pisarev, P.N., Emel’yanenko, V.N., Verevkin, S.P.: Measurement and prediction of thermochemical properties. Improved Benson-type increments for the estimation of enthalpies of vaporization and standard enthalpies of formation of aliphatic alcohols. J. Chem. Eng. Data. 50, 1114–1124 (2005).  https://doi.org/10.1021/je049561m CrossRefGoogle Scholar
  20. 20.
    Morales, G., Martinez, R.: Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations. J. Phys. Chem. A. 113, 8683–8703 (2009).  https://doi.org/10.1021/jp9030915 CrossRefGoogle Scholar
  21. 21.
    Cohen, N.: Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. J. Phys. Chem. Ref. Data. 25, 1411–1481 (1996).  https://doi.org/10.1063/1.555988 CrossRefGoogle Scholar
  22. 22.
    Benson, S.W., Golden, D.M., Haugen, G.R., Shaw, R., Cruickshank, F.R., Rodgers, A.S., O’neal, H.E., Walsh, R.: Additivity rules for the estimation of thermochemical properties. Chem. Rev. 69, 279–324 (1969).  https://doi.org/10.1021/cr60259a002 CrossRefGoogle Scholar
  23. 23.
    Joback, K.G., Reid, R.C.: Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 57, 233–243 (1987).  https://doi.org/10.1080/00986448708960487 CrossRefGoogle Scholar
  24. 24.
    Lapuerta, M., Rodríguez-Fernández, J., Oliva, F.: Determination of enthalpy of formation of methyl and ethyl esters of fatty acids. Chem. Phys. Lipids. 163, 172–181 (2010).  https://doi.org/10.1016/j.chemphyslip.2009.11.002 CrossRefGoogle Scholar
  25. 25.
    Wang, L., Ding, S., Gan, P., Chen, X., Zhang, D., Wei, X., Wang, X.: A supported nano ZnO catalyst based on a spent fluid cracking catalyst (FC3R) for the heterogeneous esterification of rosin. React. Kinet. Mech. Catal. 119, 219–233 (2016).  https://doi.org/10.1007/s11144-016-1022-9 CrossRefGoogle Scholar
  26. 26.
    Zinkel, D.F., Rusell, J.: Naval stores: Production, chemistry, utilization. Pulp Chemicals Association, New York, New York, NY (1989)CrossRefGoogle Scholar
  27. 27.
    Fieser, L.F., Campbell, W.P.: Hydroxyl and amino derivatives of dehydroabietic acid and dehydroabietinol. J. Am. Chem. Soc. 61, 2528–2534 (1939).  https://doi.org/10.1021/ja01878a080 CrossRefGoogle Scholar
  28. 28.
    Tschirch, A., Wolff, M.: The occurrence of abietic acid in resin oil. Arch. der Pharm. 245, 1–4 (1908)CrossRefGoogle Scholar
  29. 29.
    Syracuse Research Corporation of Syracuse, N.Y. (US): SciFinder data.Google Scholar
  30. 30.
    Kono, M., Maruyama, R.: Chemistry of coccids produced in Japan. XI. The resinous constituents of Ceroplastes rubens Mask. I. Nippon Nogei Kagaku Kaishi. 12, 512–520 (1936)Google Scholar
  31. 31.
    Kutan, I.: Separation of pimaric acid from resin of ordinary pine Pinus silvestris. Zhurnal Prikl. Khimii 36, 1149–1151 (1963)Google Scholar
  32. 32.
    Shmidt, E.N., Pentegova, V.A.: High-boiling neutral compounds from the oleoresin of Pinus silvestris. Izv. Sib. Otd. Akad. Nauk SSSR, Seriya Khimicheskikh Nauk. 144–146 (1968)Google Scholar
  33. 33.
    Rollett, A., Tabakoff, P., Feimer, S.: Acid constituents of sandarac resin. Monatsh. Chem. 50, 1–5 (1928)CrossRefGoogle Scholar
  34. 34.
    De Pascual Teresa, J., San Feliciano, A., Miguel del, C.M.J.: Components of Juniperus oxycedrus fruits. An. Quim. 70, 1015–1019 (1974)Google Scholar
  35. 35.
    Chang, L.C., Song, L.L., Park, E.J., Luyengi, L., Lee, K.J., Farnsworth, N.R., Pezzuto, J.M., Kinghorn, A.D.: Bioactive constituents of Thuja occidentalis. J. Nat. Prod. 63, 1235–1238 (2000).  https://doi.org/10.1021/np0001575 CrossRefGoogle Scholar
  36. 36.
    Grant, P.K., Huntrakul, C., Sheppard, D.R.J.: Diterpenes of Dacrydium bidwillii. Aust. J. Chem. 20, 969–972 (1967).  https://doi.org/10.1071/CH9670969 CrossRefGoogle Scholar
  37. 37.
    Lazarev, M.Y., Zaretskii, M. V: X-ray structural analysis of levopimaric acid. Sin. Org. Soedin. 127–137 (1970)Google Scholar
  38. 38.
    Lombard, R., Ebelin, J.: The hydrogenation of the resin acids of pine gums. II. Bull. Soc. Chim. Fr. 930–936 (1953)Google Scholar
  39. 39.
    Bardyshev, I.I., Cherches, K.A.: Dehydroabietic and palustric acids as component parts of the rosin of Picea excelsa. Dokl. Akad. Nauk SSSR. 116, 959–960 (1957)Google Scholar
  40. 40.
    Gu, W., Wang, S.: Synthesis and antimicrobial activities of novel 1H-dibenzo[a, c]carbazoles from dehydroabietic acid. Eur. J. Med. Chem. 45, 4692–4696 (2010).  https://doi.org/10.1016/J.EJMECH.2010.07.038 CrossRefGoogle Scholar
  41. 41.
    Komshilov, N.F.: High-melting abietic acid. Zhurnal Prikl Khimii 30, 1111–1115 (1957)Google Scholar
  42. 42.
    Nong, W., Chen, X., Wang, L., Liang, J., Wang, H., Long, L., Huang, Y., Tong, Z.: Measurement and correlation of solid-liquid equilibrium for abietic acid+alcohol systems at atmospheric pressure. Fluid Phase Equilib. 367, 74–78 (2014).  https://doi.org/10.1016/j.fluid.2014.01.018 CrossRefGoogle Scholar
  43. 43.
    Yadav, J.S., Baishya, G., Dash, U.: Synthesis of (+)-amberketal and its analog from l-abietic acid. Tetrahedron 63, 9896–9902 (2007).  https://doi.org/10.1016/j.tet.2007.06.063 CrossRefGoogle Scholar
  44. 44.
    Tsutsui, M.: Japanese pine resins. XI. The isolation of resin acid by the brucine salt technique: the isolation of retene-type acids. Nippon Kagaku Kaishi. Pure Chem. 496–498 (1953)Google Scholar
  45. 45.
    Harris, G.C., Sanderson, T.F.: Resin acids. I. An improved method of isolation of resin acids; isolation of a new abietic-type acid, neoabietic acid. J. Am. Chem. Soc. 70, 334–339 (1948).  https://doi.org/10.1021/ja01181a104 CrossRefGoogle Scholar
  46. 46.
    Pigulevskii, G.V., Kostenko, V.G.: Neoabietic and abietic acids-primary resin acids from oleoresin of the Siberian fir Abies sibirica. Zhurnal Prikl Khimii 33, 439–444 (1960)Google Scholar
  47. 47.
    Murray, S.M., O’Brien, R.A., Mattson, K.M., Ceccarelli, C., Sykora, R.E., West, K.N., Davis, J.H.: The fluid-mosaic model, homeoviscous adaptation, and ionic liquids: dramatic lowering of the melting point by side-chain unsaturation. Angew. Chem. 49, 2755–2758 (2010).  https://doi.org/10.1002/anie.200906169 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Environmental Catalysis Research Group, Engineering Faculty, Chemical Engineering DepartmentUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Industria Resinera Valcán, S.A.CuencaSpain
  3. 3.Department of Energy and Fuels, ETS de Ingenieros de Minas y EnergíaUniversidad Politécnica de MadridMadridSpain
  4. 4.Escuela Técnica Superior de Ingenieros IndustrialesUniversity of Castilla - La Mancha, Edificio PolitécnicoCiudad RealSpain

Personalised recommendations