Advertisement

Fermented Cassava Residue Lignin Prepared by Sequential Acid Steam-Explosion and Hot-Alkaline Treatment and Its Antioxidant Properties

  • Wenya WangEmail author
  • Shizhuo Wang
  • Yuqing Pan
  • Xianhong Ouyang
  • Robert J. Linhardt
Original Paper
  • 14 Downloads

Abstract

Fermented cassava residue (FCR) is a solid waste generated in cassava-based ethanol production that constitutes a major environmental challenge and wastes a natural resource. In the present study, a process involving sequential acid steam-explosion and hot-alkaline treatment was developed to prepare an antioxidant lignin in high yield and purity from FCR. Two-dimensional NMR analysis indicates that FCR lignin belongs to a guaiacyl/syringyl/hydroxyphenyl (G/S/H) class of lignin. 31P NMR analysis, after hydroxyl group phosphorylation, indicates that phenolic hydroxyl in FCR lignin attributable to mostly G-OH. One FCR lignin (No. 3) possessed the antioxidant activity similar to that of butylated hydroxytoluene. This FCR lignin may have potential applications as a food antioxidant or in other industrial processes as an antioxidant.

Graphic Abstract

The present study provided an efficient process of sequent acid steam-explosion and hot-alkaline treatment to improve the added value of fermented cassava residue (FCR).

Keywords

Fermented cassava residue Lignin Steam-explosion Antioxidant activity 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFD0400601), State Key Laboratory of Pulp and Paper Engineering (201760), Natural Science Foundation of China (NSFC 21576153).

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12649_2019_862_MOESM1_ESM.docx (374 kb)
Supplementary file1 (DOCX 373 kb)

References

  1. 1.
    Barclay, L.R.C., Xi, F., Norris, J.Q.: Antioxidant properties of phenolic lignin model compounds. J. Wood Chem. Technol. 17, 73–90 (1997)CrossRefGoogle Scholar
  2. 2.
    Lu, F., Chu, L.H., Gau, R.J.: Free radical-scavenging properties of lignin. Nutr. Cancer. 30, 31–38 (1998)CrossRefGoogle Scholar
  3. 3.
    Dizhbite, T., Telysheva, G., Jurkjane, V., Viesturs, U.: Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour. Technol. 95, 309–317 (2004)CrossRefGoogle Scholar
  4. 4.
    Catignani, G.L., Carter, M.E.: Antioxidant properties of lignin. J. Food Sci. 47, 1745–1748 (1982)CrossRefGoogle Scholar
  5. 5.
    Ugartondo, V., Mitjans, M., Vinardell, M.P.: Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 99, 6683–6687 (2008)CrossRefGoogle Scholar
  6. 6.
    Ayyachamy, M., Cliffe, F.E., Coyne, J.M., Collier, J., Tuohy, M.G.: Lignin: untapped biopolymers in biomass conversion technologies. Biomass Convers. Bioref. 3, 255–269 (2013)CrossRefGoogle Scholar
  7. 7.
    De, P.M.A., Furlan, L.T.: Sugar cane bagasse-lignin as photo-stabilizer for butadiene rubber. Polym. Degrad. Stabil. 11, 327–337 (1985)CrossRefGoogle Scholar
  8. 8.
    Gregorova, A., Cibulkova, Z., Kosikova, B., Simon, P.: Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stabil. 89, 553–558 (2005)CrossRefGoogle Scholar
  9. 9.
    Ayyachamy, M., Cliffe, F.E., Coyne, J.M., Collier, J., Tuohy, M.G.: Lignin: untapped biopolymers in biomass conversion technologies. Biomass Convers. Biorg. 3, 255–269 (2013)CrossRefGoogle Scholar
  10. 10.
    Dong, X., Dong, M., Lu, Y., Turley, A., Jin, T., Wu, C.: Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind. Crop. Prod. 34, 1629–1634 (2011)CrossRefGoogle Scholar
  11. 11.
    Shanavas, G., Padmaja, G., Moorthy, S.N., Sajeev, M.S., Sheriff, J.T.: Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenergy 35, 901–909 (2011)CrossRefGoogle Scholar
  12. 12.
    Qin, J.G., Chen, D.J.: Several comprehensive utilization methods of fermented cassava residue. China Bioresour. Compr. Utilation 30, 41–43 (2012). (In Chinese) Google Scholar
  13. 13.
    Li, H.X., Zhang, R.J., Tang, L., Zhang, J.H., Mao, Z.G.: Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Biomass Bioenergy 23, 227–233 (2015)Google Scholar
  14. 14.
    Ray, R.C., Mohapatra, S., Panda, S., Kar, S.: Solid substrate fermentation of cassava fibrous residue for production of α-amylase, lactic acid and ethanol. J. Environ. Biol. 29, 111–115 (2008)Google Scholar
  15. 15.
    Amin, M., Flowers, T.H.: Evaluation of Kjeldahl digestion method. J. Res. 15, 159–179 (2004)Google Scholar
  16. 16.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of structural carbohydrates and lignin in biomass. https://www.nrel.gov/biomass/pdfs/42618.pdf.
  17. 17.
    Zhang, H.J., Fan, X.G., Qiu, X.L., Zhang, Q.X., Wang, W.Y., Li, S.X., Deng, L.H., Koffas, M., Wei, D.S., Yuan, Q.P.: A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder. Bioprocess Biosyst. Eng. 37, 2425–2436 (2014)CrossRefGoogle Scholar
  18. 18.
    Zoulikha, M.R., Thierry, M., Qiuyu, Z.J.M., Nouviaire, A., Sid-Ahmed, R.: Combined steam-explosion toward vacuum and dilute-acid spraying of wheat straw. Impact of severity factor on enzymatic hydrolysis. Renew. Energy 78, 516–526 (2015)CrossRefGoogle Scholar
  19. 19.
    Chum, H.L., Johnson, D.K., Black, S.K., Overend, R.P.: Pretreatment-catalyst effects and the combined severity parameter. Appl. Biochem. Biotech. 24, 1–13 (1990)CrossRefGoogle Scholar
  20. 20.
    Faix, O., Argyropoulos, D.S., Robert, D., Neirinck, V.: Determination of hydroxyl groups in lignins evaluation of 1H-, 13C-, 31P-NMR FTIR and wet chemical methods. Holzforschung 48, 387–394 (1994)CrossRefGoogle Scholar
  21. 21.
    Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C.: Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens). Holzforschung 67, 613–627 (2013)CrossRefGoogle Scholar
  22. 22.
    Azadfar, M., Gao, A.H., Mahesh, V.B., Chen, S.L.: Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol. Int. J. Biol. Macromol. 75, 58–66 (2015)CrossRefGoogle Scholar
  23. 23.
    Roberta, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999)CrossRefGoogle Scholar
  24. 24.
    Li, P.Y., Lu, R.M., Su, W., Wu, M.Y., Peng, M.P., Liu, L.Q.: Detection of antioxidative capacity of Dioscorea futschauensis extract by ABTS assay. Hubei Agric. Sci. 55, 3173–3175 (2016). (In Chinese) Google Scholar
  25. 25.
    Ouyang, X.H., Wang, W.Y., Yuan, Q.P., Li, S.X., Zhang, Q.X., Zhao, P.X.: Improvement of lignin yield and purity from corncob in the presence of steam explosion and liquid hot pressured alcohol. RSC Adv. 5, 61650–61656 (2015)CrossRefGoogle Scholar
  26. 26.
    Wang, S.J., Ouyang, X.H., Wang, W.Y., Yuan, Q.P., Yan, A.X.: Comparison of ultrasound-assisted Fenton reaction and dilute acid-catalysed steam explosion pretreatment of corncobs: cellulose characteristics and enzymatic saccharification. RSC Adv. 6, 6848–76854 (2016)Google Scholar
  27. 27.
    Sun, S.L., Wen, J.L., Ma, M.G., Sun, R.C., Jones, G.L.: Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem. Ind. Crop Prod. 56, 128–136 (2014)CrossRefGoogle Scholar
  28. 28.
    Li, J.B., Gellerstedt, G., Toven, K.: Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour. Technol. 100, 2556–2561 (2009)CrossRefGoogle Scholar
  29. 29.
    Shuai, L., Saha, B.: Towards high-yield lignin monomer production. Green Chem. 19, 3752–3758 (2017)CrossRefGoogle Scholar
  30. 30.
    Gilarranz, M.A., Rodriguez, F., Oliet, M.: Lignin behavior during the autocatalyzed methanol pulping of Eucalyptus globulus changes in molecular weight and functionality. Holzforschung 54, 373–380 (2000)CrossRefGoogle Scholar
  31. 31.
    Pan, X.J., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N.: Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54, 5806–5813 (2006)CrossRefGoogle Scholar
  32. 32.
    Yasuda, S., Fukushima, K., Kakehi, A.: Formation and chemical structures of acid-soluble lignin I: sulfuric acid treatment time and acid-soluble lignin content of hardwood. J. Wood Sci. 47, 69–72 (2001)CrossRefGoogle Scholar
  33. 33.
    Froass, P.M., Ragauskas, A.J.: Chemical structure of residual lignin from kraft pulp. J. Wood Chem. Technol. 16, 347–365 (1996)CrossRefGoogle Scholar
  34. 34.
    Shen, D.K.: The pyrolytic mechanism of the main components in woody biomass and their interactions. Bioresour. Technol. 101, 6136–6146 (2010)CrossRefGoogle Scholar
  35. 35.
    Umezawa, T., Higuchi, T.: A novel Cα-Cβ cleavage of a β-O-4 lignin model dimer with rearrangement of the β-aryl group by Phanerochaete chrysosporium. FEBS Lett. 192, 147–150 (1985)CrossRefGoogle Scholar
  36. 36.
    Besombes, S., Utille, J.P., Mazeau, K., Robert, D., Taravel, F.R.: Conformational study of a guaiacyl β-O-4 lignin model compound by NMR. Examination of intramolecular hydrogen bonding interactions and conformational flexibility in solution. Magn. Reson. Chem. 42, 337–347 (2004)CrossRefGoogle Scholar
  37. 37.
    Balakshin, M., Capanema, E., Gracz, H., Chang, H.M., Jameel, H.: Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233, 1097–1110 (2011)CrossRefGoogle Scholar
  38. 38.
    Li, M.F., Sun, S.N., Xu, F., Sun, R.C.: Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food Chem. 134, 1392–1398 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Wenya Wang
    • 1
    • 2
    • 3
    Email author
  • Shizhuo Wang
    • 1
  • Yuqing Pan
    • 1
  • Xianhong Ouyang
    • 1
  • Robert J. Linhardt
    • 4
    • 5
    • 6
  1. 1.College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
  2. 2.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Amoy-BUCT Industrial Bio-Technovation InstituteBeijing University of Chemical TechnologyAmoyChina
  4. 4.Department of Chemistry and Chemical BiologyRensselaer Polytechnic InstituteTroyUSA
  5. 5.Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyUSA
  6. 6.Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations