Bioactive Compounds Obtained from Oilseed By-Products with Subcritical Fluids: Effects on Fusarium verticillioides Growth

  • Romina Bodoira
  • Alexis Velez
  • Damián Maestri
  • Jimena HerreraEmail author
Original Paper


Recovery of bioactive compounds from wastes is gaining interest because they could add value to by-products arising from, for example, the oil extraction processes. In this work, green solvent extraction (water/ethanol under sub-critical conditions) was used to obtain bioactive compounds from peanut, sesame and pistachio agro-industrial by-products. Extracts were analyzed in their overall chemical composition and tested on growth, ergosterol and fumonisin FB1 production by Fusarium verticillioides. The effects of the extracts on fungal growth rate and biochemical markers were not univocal, and could be associated to differences in their chemical profiles. Extracts obtained from peanut skin—composed mainly by monomeric and dimeric flavonoids—caused significant reductions in fungal growth rate but increased FB1 production. Extracts from sesame seeds—dominated by furofuran-type lignans—did not have a clear inhibitory effect on growth rate but strongly reduced both FB1 and ergosterol production. Extracts from pistachio nuts—characterized by monomeric flavonoids and gallic acid derivatives—showed minor effects on both fungal growth rate and biochemical markers. Sub-critical fluid extraction of peanut skin and defatted sesame seeds may provide an efficient method to obtain extracts rich in phenolic and lignan compounds with potential use as antifungal agents.

Graphic Abstract


Food oil industry wastes Bioactive compounds Natural antifungal Subcritical extraction 



Fumonisin B1


Galic acid


High pressure liquid chromatography–electrospray ionization–mass spectroscopy


Pistachio nuts cake


Peanut skin


Sesame seed cake


Sub-critical fluid extraction


Total phenol content



Financial support was provided from CONICET, FONCYT, SECyT-UNC and MINCyT-Córdoba. We are indebted to Romina Di Paola Naranjo (ICYTAC-CONICET) and Damián Barrionuevo (IMBIV-CONICET-UNC) for their assistance in HPLC–ESI–MS/MS and HPLC–UV analyses.

Supplementary material

12649_2019_839_MOESM1_ESM.doc (26 kb)
Supplementary file1 (DOC 25 kb)


  1. 1.
    Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A.: Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 225, 10–22 (2017)CrossRefGoogle Scholar
  2. 2.
    Lai, W.T., Khong, N.M.H., Lim, S.S., Hee, Y.Y., Sim, B.Y., Lau, K.Y., Lai, O.M.: A review: modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends Food Sci. Technol. 59, 148–160 (2016)CrossRefGoogle Scholar
  3. 3.
    Nazzaro, F., Fratianni, F., Ombra, M.N., D’Acierno, A., Coppola, R.: Recovery of biomolecules of high benefit from food waste. Curr. Opin. Food Sci. 22, 43–54 (2018)CrossRefGoogle Scholar
  4. 4.
    Sunil, L., Appaiah, P., Prasanth Kumar, P.K., Gopala Krishna, A.G.: Preparation of food supplements from oilseed cakes. J. Food Sci. Technol. 52, 2998–3005 (2014)CrossRefGoogle Scholar
  5. 5.
    Sarkis, J.R., Correa, A.P.F., Michel, I., Brandeli, A., Tessaro, I.C., Marczak, L.D.F.: Evaluation of the phenolic content and antioxidant activity of different seed and nut cakes from the edible oil industry. J. Am. Oil Chem. Soc. 91, 1773–1782 (2014)CrossRefGoogle Scholar
  6. 6.
    Terpinc, P., Ceh, B., Ulrih, N.P., Abramoviˇc, H.: Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind. Crops Prod. 39, 210–217 (2012)CrossRefGoogle Scholar
  7. 7.
    Ramachandran, S., Singh, S.K., Larroche, C., Soccol, C.R., Pandey, A.: Oil cakes and their biotechnological applications—a review. Bioresour. Technol. 98, 2000–2009 (2007)CrossRefGoogle Scholar
  8. 8.
    Meriles, J.M., Giorda, L.M., Maestri, D.M.: Effect of planting date on Fusarium spp. and Diaporthe/Phomopsis complex incidence and its relationship with soybean seed quality. J. Phytopathol. 150, 606–610 (2002)CrossRefGoogle Scholar
  9. 9.
    IARC: International Agency for Research on Cancer.: IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans: Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene, vol. 82, pp. 301–366. International Agency for Research on Cancer, Lyon (2002)Google Scholar
  10. 10.
    Agrios, G.: Plant Pathol, 5th edn. Elsevier Academic Press, Nueva York (2005)Google Scholar
  11. 11.
    Błaszczak-Świątkiewicz, K., Sikora, J., Szymański, J., Danilewicz, M., Mikiciuk-Olasik, E.: Biological evaluation of the toxicity and the cell cycle interruption by some benzimidazole derivatives. Tumor Biol. 37, 11135–11145 (2016)CrossRefGoogle Scholar
  12. 12.
    Seiber, J.N., Coats, J., Duke, S.O., Gross, A.D.: Biopesticides: state of the art and future opportunities. J. Agric. Food Chem. 62, 11613–11619 (2014)CrossRefGoogle Scholar
  13. 13.
    Barral, B., Chillet, M., Minier, J., Lechaudel, M., Schorrgalindo, S.: Evaluating the response to Fusarium ananatum inoculation and antifungal activity of phenolic acids in pineapple. Fungal Biol. 121, 1045–1053 (2017)CrossRefGoogle Scholar
  14. 14.
    Wang, S., Zheng, Y., Xiang, F., Li, S., Yang, G.: Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L. J. Food Drug Anal. 24, 881–887 (2016)CrossRefGoogle Scholar
  15. 15.
    Brado Avanço, G., Dias Ferreira, F., Silva Bomfim, N., De Souza, A., Rodrigues dos Santos, P., Peralta, R.M., Brugnari, T., Mallmann, C.A., de Abreu, Alves, Filho, B., Graton Mikcha, J.M., Machinski, M.: Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control 73, 806–813 (2017)CrossRefGoogle Scholar
  16. 16.
    Dambolena, J.S., López, A.G., Meriles, J.M., Rubinstein, H.R., Zygadlo, J.A.: Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure property activity relationship study. Food Control 28, 63–70 (2012)CrossRefGoogle Scholar
  17. 17.
    Da Silva, Bomfim N., Polis Nakassugi, L., Faggion Pinheiro Oliveira, J., Yumie Kohiyama, C., Aparecida, S., Mossini, G., Grespan, R., Botião Nerilo, S., Mallmann, C.A., Abreu Filho, B.A., Machinski, M.: Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem. 166, 330–336 (2015)CrossRefGoogle Scholar
  18. 18.
    Bodoira, R., Velez, A., Andreatta, A.E., Martinez, M., Maestri, D.: Extraction of bioactive compounds from sesame (Sesamum indicum L.) defatted seeds using water and ethanol under sub-critical conditions. Food Chem. 237, 114–120 (2017)CrossRefGoogle Scholar
  19. 19.
    Ben Othman, S., Katsuno, N., Kanamaru, Y., Yabe, T.: Water-soluble extracts from defatted sesame seed flour show antioxidant activity in vitro. Food Chem. 175, 306–314 (2015)CrossRefGoogle Scholar
  20. 20.
    Esmaeilzadeh, B.S., Sharifi, M., Behmanesh, M., Safaie, N., Murata, J., Araki, R., Yamagaki, T., Satake, H.: Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album. J. Plant Physiol. 169, 487–491 (2012)CrossRefGoogle Scholar
  21. 21.
    Kulik, T., Busko, M., Pszczółkowska, A., Perkowsk, J., Okorski, A.: Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum Lett. Appl. Microbiol. 59(99), 107 (2014)Google Scholar
  22. 22.
    Barbary, O.M., El-Sohaimy, S.A., El-Saadani, M.A., Zeitoun, A.M.A.: Antioxidant, antimicrobial and anti-HCV activities of lignan extracted from flaxseed. Res. J. Agric. Biol. Sci. 6, 247–256 (2010)Google Scholar
  23. 23.
    Nishiwaki, H., Nakazaki, S., Akiyama, K., Yamauchi, S.: Structure-antifungal activity relationship of fluorinated dihydroguaiaretic acid derivatives and preventive activity against Alternaria alternata Japanese pear pathotype. J. Agric. Food Chem. 65, 6701–6707 (2017)CrossRefGoogle Scholar
  24. 24.
    Ma, Y.Y., Cagnazzo, A.K., Kerr, W.L., Amarowicz, R., Swanson, R.B., Pegg, R.B.: Separation and characterization of phenolic compounds from dry-blanched peanut skins by liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A 1356, 64–81 (2014)CrossRefGoogle Scholar
  25. 25.
    Bodoira, R., Rossi, Y., Montenegro, M., Maestri, D., Velez, A.: Extraction of antioxidant polyphenolic compounds from peanut skin using water-ethanol at high pressure and temperature conditions. J. Supercrit. Fluid 128, 57–65 (2017)CrossRefGoogle Scholar
  26. 26.
    Pizzolitto, R.P., Dambolena, J.S., Zunino, M.P., Larrauri, M., Grosso, N.R., Nepote, V., Dalcero, A.M., Zygadlo, J.A.: Activity of natural compounds from peanut skins on Fusarium verticillioides growth and fumonisin B1 production. Ind. Crops Prod. 47, 286–290 (2013)CrossRefGoogle Scholar
  27. 27.
    Sarnoski, P., Boyer, R., O’Keefe, S.F.: Application of proanthocyanidins from peanut skins as a natural yeast inhibitory agent. J. Food Sci. 77, 242–249 (2012)CrossRefGoogle Scholar
  28. 28.
    Rajaei, A., Barzegar, M., Mobarez, A.M., Sahari, M.A., Esfahani, Z.H.: Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachio vera) green hull extract. Food Chem. Toxicol. 48, 107–112 (2010)CrossRefGoogle Scholar
  29. 29.
    Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.S., Abert-Vian, M.: Review of green food processing techniques. Preservation, transformation and extraction. Innov Food Sci. Emerg. Technol. 41, 357–377 (2017)CrossRefGoogle Scholar
  30. 30.
    Martínez, M.M., Bordón, M.G., Lallana, R.L., Ribotta, P.D., Maestri, D.M.: Optimization of sesame oil extraction by screw-pressing at low temperature. Food Bioprocess Tech. 10, 1113–1121 (2017)CrossRefGoogle Scholar
  31. 31.
    Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  32. 32.
    Ersan, S., Ustundag, O.G., Carle, R., Schweiggert, R.F.: Identification of phenolic compounds in red and green pistachio (Pistacia vera L.) hulls (exo- and mesocarp) by HPLC-DAD-ESI-(HR)-MS. J. Agric. Food Chem. 64, 5334–5344 (2016)CrossRefGoogle Scholar
  33. 33.
    Leslie, J.F., Plattner, R.D., Desjardins, A.E., Klittich, C.J.: Fumonisin B1 production by strains from different mating populations of Gibberella fujikuroi (Fusarium section Liseola). Phytopathology 82, 341–345 (1992)CrossRefGoogle Scholar
  34. 34.
    Shephard, G.S., Sydenham, E.W., Thiel, P.G., Gelderblom, W.C.A.: Quantitative determination of fumonisin B1 and B2 by high-performance liquid chromatography with fluorescence detection. J. Liq. Chromatogr. 13, 2077–2087 (1990)CrossRefGoogle Scholar
  35. 35.
    Dambolena, J.S., López, A.G., Canepa, M.C., Theumer, M.G., Zygadlo, J.A., Rubinstein, H.R.: Inhibitory effect of cyclic terpenes (limonene, menthol, menthone and thymol) on Fusarium verticillioides MRC 826 growth and fumonisin B1 biosynthesis. Toxicon 51, 37–44 (2008)CrossRefGoogle Scholar
  36. 36.
    Sichetti Munekata, P.E., Paseto Fernandes, R.P., Pires de Melo, M., Trindade, M.A., Lorenzo, J.M.: Influence of peanut skin extract on shelf-life of sheep patties. Asian Pac. J. Trop. Med. 6, 586–596 (2016)CrossRefGoogle Scholar
  37. 37.
    Sarnoski, P.J., Johnson, J.V., Reed, K.A., Tanko, J.M., O’Keefe, S.F.: Separation and characterisation of proanthocyanidins in Virginia type peanut skins by LC–MS. Food Chem. 131, 927–939 (2012)CrossRefGoogle Scholar
  38. 38.
    Moazzami, A.A., Andersson, R.E., Kamal-Eldin, A.: HPLC analysis of sesaminol glucosides in sesame seeds. J. Agric. Food Chem. 54, 633–638 (2007)CrossRefGoogle Scholar
  39. 39.
    Dar, A.A., Arumugam, N.: Lignans of sesame: Purification methods, biological activities and biosynthesis—a review. Bioorg. Chem. 50, 1–10 (2013)CrossRefGoogle Scholar
  40. 40.
    Nadeem, M., Situ, C., Mahmud, A., Khalique, A., Imran, M., Rahman, F., Khan, S.: Antioxidant activity of sesame (Sesamum indicum L.) cake extract for the stabilization of olein based butter. J. Am. Oil Chem. Soc. 91, 967–977 (2014)CrossRefGoogle Scholar
  41. 41.
    Shan, B., Cai, Y.Z., Brooks, J.D., Corke, H.: Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents. Food Chem. 109, 530–537 (2008)CrossRefGoogle Scholar
  42. 42.
    Hwang, B., Lee, J., Liu, Q., Woo, E., Lee, D.G.: Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii. Molecules 15, 3507–3516 (2010)CrossRefGoogle Scholar
  43. 43.
    Céspedes, C.L., Guillermo Avila, J., García, A.M., Becerra, J., Flores, C., Aqueveque, P., Bittner, M., Hoeneisen, M., Martinez, M., Silva, M.: Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Zeitschrift für Naturforschung C 61, 35–43 (2006)CrossRefGoogle Scholar
  44. 44.
    Reynoso, M., Torres, A., Ramírez, M.L., Rodríguez, M., Chulze, S., Magan, N.: Efficacy of antioxidant mixtures on growth, fumonisins production and hydrolyticenzyme production by Fusarium verticillioides and F. proliferatum in vitro on maize-based media. Mycol. Res. 106, 1093–1099 (2002)CrossRefGoogle Scholar
  45. 45.
    Bendaha, H., Yu, L., Touzani, R., Souane, R., Giaever, G., Nislowc, C., Boone, C., El Kadiri, S., Brownb, G.W., Bellaoui, M.: New azole antifungal agents with novel modes of action: synthesis and biological studies of new tridentate ligands based on pyrazole and triazole. Eur. J. Med. Chem. 46, 4117–4124 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Romina Bodoira
    • 1
    • 2
  • Alexis Velez
    • 2
    • 4
  • Damián Maestri
    • 2
    • 3
  • Jimena Herrera
    • 2
    • 3
    Email author
  1. 1.Instituto de Ciencia Y Tecnología de Los Alimentos Córdoba (ICYTAC)Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET) - Universidad Nacional de Córdoba (UNC)CórdobaArgentina
  2. 2.Instituto de Ciencia Y Tecnología de Los Alimentos, ICTA, Facultad de Ciencias Exactas, Físicas Y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Instituto Multidisciplinario de Biología Vegetal (IMBIV)Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET) - Universidad Nacional de Córdoba (UNC)CórdobaArgentina
  4. 4.Instituto de Investigación y Desarrollo en Ingeniería de Procesos Y Química Aplicada. (IPQA-CONICET), Facultad de Ciencias Exactas, Físicas Y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations