Potential of Chestnut Wastes for Cosmetics and Pharmaceutical Applications

  • N. Flórez-Fernández
  • M. D. TorresEmail author
  • S. Gómez
  • S. Couso
  • H. Domínguez
Original Paper


The aqueous extraction of Castanea sativa underutilized parts (leaves, burs, husks) was proposed to obtain different soluble and insoluble fractions. The optimum extraction and concentration conditions were selected based on previously published studies. The extracts from leaves and husks were concentrated by membranes and those from burs were refined by adsorption–desorption to concentrate the active phenolic compounds showing radical scavenging capacity. A preliminary screening was made in order to explore the extracts’ pharmaceutical potential, evaluating the cell viability against representative human tumoral cells and the potential as a cosmetic ingredient was also evaluated for their inhibitory activities against collagenase, elastase and tyrosinase. In addition, chestnut husk ashes were used as an alternative source for potash production suitable to formulate potassium soaps with interesting mechanical properties.

Graphic Abstract


Castanea sativa Leaves Burs Husks Ashes Phenolics Bioactive properties Potash soaps 



Epithelial lung adenocarcinoma cells


2,2′-Azinobis (3-ethyl-benzothiazoline-6-sulfonate)


Breast cancer HER2+ cells


Chestnut burs


Chestnut burs concentrated extract


Chestnut burs extract


Chestnut leaves


Chestnut husks ashes concentrated of extract


Chestnut husks ashes of extract


Chestnut husks concentrated extract


Chestnut husks extract


Chestnut leaves concentrated extract


Chestnut leaves extract


Castanea sativa Leaves


Dimethyl sulfoxide


Enzymes of the extracellular matrix


Epigallocatechin galate


Gallic acid equivalent


Colon carcinoma cells


Eritroleukemia cells


Acute promyelocytic leukemia cells


Inductively coupled plasma mass spectrometry


Acute myeloid leukemia cells




Breast cancer ER+ cells


Breast cancer cells


Human recombinant collagenase


Matrix metalloproteinases


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


Lung cancer cells


Phosphate buffer saline


Pancreatic adenocarcinoma cells


Reactive oxygen species


Breast cancer HER2+ cells


Caucasian human glioblastoma cells



The authors are grateful to the Xunta de Galicia (FEADER 2016/23B and CINBIO). Both projects were partially funded by the FEDER Program of the European Union (“Unha maneira de facer Europa”). M.D.T. thanks Spanish Ministry of Economy and Competitiveness for her postdoctoral grant (IJCI-2016-27535). N.F.F. and S.G. thank CINBIO (Centro singular de investigación de Galicia accreditation 2016–2019).


  1. 1.
    Abdul Karim, A., Azlan, A., Ismail, A., Hashim, P., Abd Gani, S.S., Zainudin, B.H., Abdullah, N.A.: Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Compl. Alt. Med. 14, 381 (2014)CrossRefGoogle Scholar
  2. 2.
    Almeida, I.F., Valentão, P., Andrade, P.B., Seabra, R.M., Pereira, T.M., Amaral, M.H., Costa, P.C., Bahia, M.F.: In vivo skin irritation potential of a Castanea sativa (chestnut) leaf extract, a putative natural antioxidant for topical application. Basic Clin. Pharmacol. 103, 461–467 (2008)CrossRefGoogle Scholar
  3. 3.
    Balboa, E.M., Soto, M.L., Nogueira, D.R., González-López, N., Conde, E., Moure, A., Vinardell, M.P., Mitjans, M., Domínguez, H.: Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind. Crop. Prod. 58, 104–110 (2014)CrossRefGoogle Scholar
  4. 4.
    Barreira, J.C.M., Ferreira, I.C.F.R., Oliveira, M.B.P.P., Pereira, J.A.: Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 107, 1106–1113 (2008)CrossRefGoogle Scholar
  5. 5.
    Braga, N., Rodrigues, F., Beatriz, M., Oliveira, P.P.: Castanea sativa by-products: a review on added value and sustainable application. Nat. Prod. Res. 29(1), 1–18 (2015)CrossRefGoogle Scholar
  6. 6.
    Calliste, C.A., Trouillas, P., Allais, D.P., Duroux, J.L.: Castanea sativa Mill. leaves as new sources of natural antioxidant: an Electronic Spin Resonance Study. J. Agric. Food Chem. 53, 282–288 (2005)CrossRefGoogle Scholar
  7. 7.
    Chen, C.-Y., Lin, L.-C., Yang, W.-F., Bordon, J., Wang, H.-M.D.: An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr. Pharm. Des. 19, 4–18 (2015)Google Scholar
  8. 8.
    Chiang, H.M., Chen, H.C., Lin, T.J., Shih, I.C., Wen, K.C.: Michelia alba extract attenuates UVB-induced expression of matrix metalloproteinases via MAP kinase pathway in human dermal fibroblasts. Food Chem. Toxicol. 50, 4260–4269 (2012)CrossRefGoogle Scholar
  9. 9.
    Conde, E., Moure, A., Domínguez, H., Gordon, M.H., Parajó, J.C.: Purified phenolics from hydrothermal treatments of biomass: ability to protect sunflower bulk oil and model food emulsions from oxidation. J. Agric. Food Chem. 59, 9158–9165 (2011)CrossRefGoogle Scholar
  10. 10.
    Conde, E., Moure, A., Domínguez, H., Parajó, J.C.: Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT-Food Sci. Technol. 44, 436–442 (2011)CrossRefGoogle Scholar
  11. 11.
    Díaz-Reinoso, B., Couto, D., Moure, A., Fernandes, E., Domínguez, H., Parajó, J.C.: Optimization of antioxidants extraction from Castanea sativa leaves. Chem. Eng. J. 203, 101–109 (2012)CrossRefGoogle Scholar
  12. 12.
    Díaz-Reinoso, B., Moure, A., Domínguez, H., Parajó, J.C.: Membrane concentration of antioxidants from Castanea sativa leaves aqueous extracts. Chem. Eng. J. 175(1), 95–102 (2011)CrossRefGoogle Scholar
  13. 13.
    González-López, N., Moure, A., Domínguez, H.: Hydrothermal fractionation of Sargassum muticum biomass. J. Appl. Phycol. 24, 1569–1578 (2012)CrossRefGoogle Scholar
  14. 14.
    González-López, N., Moure, A., Domínguez, H., Parajó, J.C.: Valorization of chestnut husks by non-isothermal hydrolysis. Ind. Crop. Prod. 36, 172–176 (2011)CrossRefGoogle Scholar
  15. 15.
    Gullón, B., Eibes, G., Dávila, I., Moreira, M.T., Labidi, J., Gullón, P.: Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds. Carbohydr. Polym. 192, 75–83 (2018)CrossRefGoogle Scholar
  16. 16.
    Hrenn, A., Steinbrecher, T., Labahn, A., Schwager, J., Schempp, C.M., Merfort, I.: Plant phenolics inhibit neutrophil elastase. Plant. Med. 72, 1127–1131 (2006)CrossRefGoogle Scholar
  17. 17.
    Hwang, J.H., Lee, B.M.: Inhibitory effects of plant extracts on tyrosinase, l-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A. 70, 393–407 (2007)CrossRefGoogle Scholar
  18. 18.
    Ince, M., Ince, O.K., Asam, E., Önal, A.: Using food waste biomass as effective adsorbents in water and wastewater treatment for Cu(II) removal. Atom. Spectrosc. 38, 142–148 (2017)Google Scholar
  19. 19.
    Kim, H.H., Kim, D.H., Oh, M.H., Park, K.J., Heo, J.H., Lee, M.W.: Inhibition of matrix metalloproteinase-1 and type-I procollagen expression by phenolic compounds isolated from the leaves of Quercus mongolica in ultraviolet-irradiated human fibroblast cells. Arch. Pharmacal. Res. 38, 11–17 (2015)CrossRefGoogle Scholar
  20. 20.
    Kim, M., Park, J., Song, K., Kim, H.G., Koh, J.-S., Boo, Y.C.: Screening of plant extracts for human tyrosinase inhibiting effects. Int. J. Cosmetic Sci. 34, 202–208 (2012)CrossRefGoogle Scholar
  21. 21.
    Kolakul, P., Sripanidkulchai, B.: Phytochemicals and anti-aging potentials of the extracts from Lagerstroemia speciosa and Lagerstroemia floribunda. Ind. Crop. Prod. 109, 707–716 (2017)CrossRefGoogle Scholar
  22. 22.
    Lenzi, M., Malaguti, M., Cocchi, V., Hrelia, S., Hrelia, P.: Castanea sativa Mill bark extract exhibits chemopreventive properties triggering extrinsic apoptotic pathway in Jurkat cells. BMC Compl. Alt. Med. 17, 251 (2017)CrossRefGoogle Scholar
  23. 23.
    Moody, J.O., Adebiyi, O.A., Adeniyi, B.A.: Do Aloe vera and Ageratum conyzoides enhance the anti-microbial activity of tradicional medicinal soft soaps (Osedudu)? J. Ethnopharmacol. 92, 57–60 (2004)CrossRefGoogle Scholar
  24. 24.
    Moreira, R., Chenlo, F., Torres, M.D.: Effect of shortenings on the rheology of gluten-free doughs: study of chestnut flour with chia flour, olive and sunflower oils. J. Text. Stud. 43(5), 375–383 (2012)CrossRefGoogle Scholar
  25. 25.
    Moure, A., Conde, E., Falqué, H.Domínguez, Parajó, J.C.: Production of nutraceutics from chestnut burs by hydrolytic treatment. Food Res. Int. 65, 359–366 (2014)CrossRefGoogle Scholar
  26. 26.
    Pinto, D., Rodrigues, F., Braga, N., Santos, J., Pimentel, F.B., Palmeira-De-Oliveira, A., Oliveira, M.B.P.P.: The Castanea sativa bur as a new potential ingredient for nutraceutical and cosmetic outcomes: preliminary studies. Food Funct. 8(1), 201–208 (2017)CrossRefGoogle Scholar
  27. 27.
    Pinto, D., Rodrigues, F., Braga, N., Santos, J., Pimentel, F.B., Palmeira-de-Oliveira, A.: The Castanea sativa bur as a new potential ingredient for nutraceutical and cosmetic outcomes: preliminary studies. Food Funct. 8, 201–208 (2017)CrossRefGoogle Scholar
  28. 28.
    Sahasrabudhe, A., Deodhar, M.: Anti-hyaluronidase, anti-elastase activity of Garcinia indica. Int. J. Bot. 6, 299–303 (2010)CrossRefGoogle Scholar
  29. 29.
    Singleton, V.L., Rossi, J.A.: Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144–158 (1965)Google Scholar
  30. 30.
    Squillaci, G., Apone, F., Sena, L.M., Carola, A., Tito, A., Bimonte, M., Lucia, A.D., Colucci, G., Cara, F.L., Morana, A.: Chestnut (Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochem. 64, 228–236 (2018)CrossRefGoogle Scholar
  31. 31.
    Talos-Nebehaj, E., Hofmann, T., Albert, L.: Seasonal changes of natural antioxidant content in the leaves of Hungarian forest trees. Ind. Crops Prod. 98, 53–59 (2017)CrossRefGoogle Scholar
  32. 32.
    Torres, M.D., Seijo, J.: By-products from the chestnut industry used to produce natural potassium soaps: physicochemical properties. J. Surfactants Deterg. 19, 381–387 (2016)CrossRefGoogle Scholar
  33. 33.
    Torres, M.D., Arufe, S., Chenlo, F., Moreira, R.: Coeliacs cannot live by gluten-free bread alone—every once in awhile they need antioxidants. Int. J. Food Sci. Technol. 52(1), 81–90 (2017)CrossRefGoogle Scholar
  34. 34.
    Vázquez, G., Fernández-Agulló, A., Gómez-Castro, C., Freire, M.S., Antorrena, G., González-Álvarez, J.: Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Ind. Crops Prod. 35, 126–134 (2012)CrossRefGoogle Scholar
  35. 35.
    Vázquez, G., Fontenla, E., Santos, J., Freire, M.S., González-Álvarez, J., Antorrena, G.: Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind. Crops Prod. 28, 279–285 (2008)CrossRefGoogle Scholar
  36. 36.
    Wittenauer, J., MäcKle, S., Sußmann, D., Schweiggert-Weisz, U., Carle, R.: Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Fitoterapia 101, 179–187 (2015)CrossRefGoogle Scholar
  37. 37.
    Zamuz, S., López-Pedrouso, M., Barba, F.J., Lorenzo, J.M., Domínguez, H., Franco, D.: Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 112, 263–273 (2018)CrossRefGoogle Scholar
  38. 38.
    Živković, J., Mujić, I., Zeković, Z., Vidovic, S., Mujić, A., Jokić, S.: Radical scavenging, antimicrobial activity and phenolic content of Castanea sativa extracts. J. Cent. Eur. Agr. 10, 175–182 (2009)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of Vigo (Campus Ourense)OurenseSpain
  2. 2.Amarelante Sociedade Cooperativa Galega. A CorredoiraManzaneda, OurenseSpain

Personalised recommendations