Advertisement

Seed-Assisted, OSDA-Free, Solvent-Free Synthesis of ZSM-5 Zeolite from Iron Ore Tailings

  • Peng Zhang
  • Suqin LiEmail author
  • Penghui Guo
  • Changquan Zhang
Original Paper
  • 22 Downloads

Abstract

Comprehensive utilization of iron ore tailings (IOT) not only solves environmental problems but also creates huge economic benefits. Our approach is focused on reutilization of IOT by converting it to ZSM-5 zeolite. The solvent and organic structure-directing agents (OSDA) used in the hydrothermal synthesis of ZSM-5 zeolite are major obstacles to achieve the sustainable synthesis routes. Therefore, the development of environmentally friendly ZSM-5 zeolite synthesis method is strongly desired. Here, ZSM-5 zeolite is synthesized successfully from IOT via a seed-assisted, solvent-free method without using the organic template or solvent. In addition, the influences of Na2CO3·10H2O/SiO2 molar ratio, amount of seeds, and crystallization process of ZSM-5 are systematically investigated. The raw materials and as-synthesized products are characterized by XRD, XRF, SEM, 27Al MAS NMR, and BET analysis; and the ZSM-5 zeolite synthesized by seed-assisted, OSDA-free, solvent-free method has the same mesoporous and microporous structure as the seed crystal. The synthetic route proposed in this work provides a novel green alternative for the synthesis of ZSM-5 from IOT.

Graphic Abstract

Figure schematic illustration of the seed-assisted, OSDA-free, solvent-free synthesis of ZSM-5
.

Keywords

ZSM-5 zeolites Iron ore tailings (IOT) Solvent-free method Organic structure, seed-assisted, directing agents (OSDA)-free 

Notes

Acknowledgements

This work is supported by National Science Foundation of China (Project 51874039), National Science and Technology Major Project (2017ZX07402001), and National Key R&D Program of China (2017YFC0210301). The authors would like to thank Yonghong Tang from shiyanjia lab for the support of 27Al MAS NMR analysis (www.shiyanjia.com).

References

  1. 1.
    McDonald, J.E.D., Roaches, S.C., Kawatra, K.: Repurposing mine tailings: cold bonding of siliceous iron ore tailings. Miner. Metall. Process. 33, 47–52 (2016)Google Scholar
  2. 2.
    Osinubi, K.J., Yohanna, P., Eberemu, A.O.: Cement modification of tropical black clay using iron ore tailings as admixture. Transp. Geotech. 5, 35–49 (2015)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Wu, Y.W., Zhang, H., Zhi, Z.C.: Phase, magnetism and thermal conductivity of glass ceramics from iron ore tailings. J. Cent. South Univ. 21, 3456–3462 (2014)CrossRefGoogle Scholar
  4. 4.
    Jegatheesan, V., Liow, J.L., Shu, L., Kim, S.H., Visvanathan, C.: The need for global coordination in sustainable development. J. Clean. Prod. 17, 637–643 (2009)CrossRefGoogle Scholar
  5. 5.
    Zhang, C.Q., Li, S.Q.: Utilization of iron ore tailing for the synthesis of zeolite A by hydrothermal method. J. Mater. Cycles Waste Manage. 20, 1605–1614 (2017)CrossRefGoogle Scholar
  6. 6.
    Wang, C.L., Ni, W., Zhang, S.Q., Wang, W.K.: Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Constr. Build. Mater. 104, 109–115 (2016)CrossRefGoogle Scholar
  7. 7.
    Cele, E.N., Maboeta, M.: A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: implications for an iron ore mine site remediation. J. Environ. Manage. 165, 167–174 (2016)CrossRefGoogle Scholar
  8. 8.
    Zeng, S.J., Wan, R.W., Zhang, Z.T., Qiu, S.L.: Solventless green synthesis of sodalite zeolite using diatomite as silica source by a microwave heating technique. Inorg. Chem. Commun. 70, 168–171 (2016)CrossRefGoogle Scholar
  9. 9.
    Lok, B.M., Cannan, T.R., Messina, C.A.: The role of organic molecules in molecular sieve synthesis. Zeolites 3, 282–291 (1983)CrossRefGoogle Scholar
  10. 10.
    Sang, S.Y., Chang, F.X., Liu, Z.M., He, C.Q., He, Y.L., Xu, L.: Difference of ZSM-5 zeolites synthesized with various templates. Catal. Today 93, 729–734 (2004)CrossRefGoogle Scholar
  11. 11.
    Kamimura, Y., Tanahashi, S., Itabashi, K., Sugawara, A., Wakihara, T., Shimojima, A., Okubo, T.: Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis. J. Phys. Chem. C 115, 744–750 (2011)CrossRefGoogle Scholar
  12. 12.
    Xue, T., Li, S.S., Wu, H.H., Wu, P., He, M.Y.: Eco-friendly and cost-effective synthesis of ZSM-5 aggregates with hierarchical porosity. Ind. Eng. Chem. Res. 56, 13535–13542 (2017)CrossRefGoogle Scholar
  13. 13.
    Majano, G., Darwiche, A., Mintova, S., Valtchev, V.: Seed-induced crystallization of nanosized Na-ZSM-5 crystals. Ind. Eng. Chem. Res. 48, 7084–7091 (2009)CrossRefGoogle Scholar
  14. 14.
    Shiralkar, V.P., Clearfield, A.: Synthesis of the molecular sieve ZSM-5 without the aid of templates. Zeolites 9, 363–370 (1989)CrossRefGoogle Scholar
  15. 15.
    Kalipcilar, H., Culfaz, A.: Influence of nature of silica source on template-free synthesis of ZSM-5. Cryst. Res. Technol. 36, 1197–1207 (2001)CrossRefGoogle Scholar
  16. 16.
    Kim, S.D., Noh, S.H., Seong, K.H., Kim, W.J.: Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring. Microporous Mesoporous Mater. 72, 185–192 (2004)CrossRefGoogle Scholar
  17. 17.
    Kim, S.D., Noh, S.H., Seong, K.H., Kim, W.J.: Organic-free synthesis of ZSM-5 with narrow crystal size distribution using two-step temperature process. Microporous Mesoporous Mater. 92, 181–188 (2006)CrossRefGoogle Scholar
  18. 18.
    Ren, N., Yang, Z.J., Lv, X.C., Shi, J., Zhang, Y.H., Tang, Y.: A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology. Microporous Mesoporous Mater. 131, 103–114 (2010)CrossRefGoogle Scholar
  19. 19.
    Ren, N., Bronić, J., Subotić, B., Lv, X.C., Zhang, Y.H., Tang, Y.: Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: influence of alkalinity on the structural, particulate and chemical properties of the products. Microporous Mesoporous Mater. 139, 197–206 (2011)CrossRefGoogle Scholar
  20. 20.
    Ren, N., Bronić, J., Subotić, B., Lv, X.C., Zhang, Y.H., Tang, Y.: Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 2: influence of sodium ions and ageing of the reaction mixture on the chemical composition, crystallinity and particulate properties of the products. Microporous Mesoporous Mater. 147, 229–241 (2012)CrossRefGoogle Scholar
  21. 21.
    Xue, T., Chen, L., Wang, Y.M., He, M.Y.: Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template. Microporous Mesoporous Mater. 156, 97–105 (2012)CrossRefGoogle Scholar
  22. 22.
    Zeng, S.J., Wang, R.W., Li, A., Huang, W.W., Zhang, Z.T.: Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure. CrystEngComm 18, 6779–6783 (2016)CrossRefGoogle Scholar
  23. 23.
    Wu, Q., Wang, X., Qi, G., Guo, Q., Pan, S., Meng, X., Xu, J., Deng, F., Fan, F., Feng, Z., Li, C., Maurer, S., Muller, U., Xiao, F.S.: Sustainable synthesis of zeolites without addition of both organotemplates and solvents. J. Am. Chem. Soc. 136, 4019–4025 (2014)CrossRefGoogle Scholar
  24. 24.
    Ren, L.M., Wu, Q.M., Yang, C.G., Zhu, L.F., Li, C.J., Zhang, P.L., Zhang, H.Y., Meng, X.J., Xiao, F.S.: Solvent-free synthesis of zeolites from solid raw materials. J. Am. Chem. Soc. 134, 15173–15176 (2012)CrossRefGoogle Scholar
  25. 25.
    Meng, X., Xiao, F.S.: Green routes for synthesis of zeolites. Chem. Rev. 114, 1521–1543 (2014)CrossRefGoogle Scholar
  26. 26.
    Zhang, P., Wang, L., Ren, L., Zhu, L., Sun, Q., Zhang, J., Meng, X., Xiao, F.S.: “Solvent-free” synthesis of thermally stable and hierarchically porous aluminophosphates (SF-APOs) and heteroatom-substituted aluminophosphates (SF-MAPOs). J. Mater. Chem. 21, 12026–12033 (2011)CrossRefGoogle Scholar
  27. 27.
    Jin, Y., Sun, Q., Qi, G., Yang, C., Xu, J., Chen, F., Meng, X., Deng, F., Xiao, F.S.: Solvent-free synthesis of silicoaluminophosphate zeolites. Angew. Chem. Int. Ed. Engl. 52, 9172–9175 (2013)CrossRefGoogle Scholar
  28. 28.
    Wu, Q., Liu, X., Zhu, L., Ding, L., Gao, P., Wang, X., Pan, S., Bian, C., Meng, X., Xu, J., Deng, F., Maurer, S., Muller, U., Xiao, F.S.: Solvent-free synthesis of zeolites from anhydrous starting raw solids. J. Am. Chem. Soc. 137, 1052–1055 (2015)CrossRefGoogle Scholar
  29. 29.
    Sánchez-Hernández, R., López-Delgado, A., Padilla, I., Galindo, R., López-Andrés, S.: One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste. Microporous Mesoporous Mater. 226, 267–277 (2016)CrossRefGoogle Scholar
  30. 30.
    Sánchez-Hernández, R., Padilla, I., López-Andrés, S., López-Delgado, A.: Eco-friendly bench-scale zeolitization of an Al-containing waste into gismondine-type zeolite under effluent recycling. J. Clean. Prod. 161, 792–802 (2017)CrossRefGoogle Scholar
  31. 31.
    Luo, W., Yang, X.Y., Wang, Z.R., Huang, W.F., Chen, J.Y., Jiang, W., Wang, L.J., Cheng, X.W., Deng, Y.H., Zhao, D.Y.: Synthesis of ZSM-5 aggregates made of zeolite nanocrystals through a simple solvent-free method. Microporous Mesoporous Mater. 243, 112–118 (2017)CrossRefGoogle Scholar
  32. 32.
    Wu, Q., Meng, X.J., Gao, X.H., Xiao, F.S.: Solvent-free synthesis of zeolites: mechanism and utility. Acc. Chem. Res. 51, 1396–1403 (2018)CrossRefGoogle Scholar
  33. 33.
    Han, S.Y., Liu, Y., Yin, C.R., Jiang, N.Z.: Fast synthesis of submicron ZSM-5 zeolite from leached illite clay using a seed-assisted method. Microporous Mesoporous Mater. 275, 223–228 (2019)CrossRefGoogle Scholar
  34. 34.
    Liu, X.F., Zeng, S.J., Wang, R.W., Zhang, Z.T., Qiu, S.L.: Sustainable synthesis of hierarchically porous silicalite-1 zeolite by steam-assisted crystallization of solid raw materials without secondary templates. Chem. Res. Chin. Univ. 1, 1 (2018).  https://doi.org/10.1007/s40242-018-7400-2 Google Scholar
  35. 35.
    Cheng, Y., Liao, R.H., Li, J.S., Sun, X.Y., Wang, L.J.: Synthesis research of nanosized ZSM-5 zeolites in the absence of organic template. J. Mater. Process. Technol. 206, 445–452 (2008)CrossRefGoogle Scholar
  36. 36.
    Superti, G.B., Oliveira, E.C., Pastore, H.O., Bordo, A., Bisio, C., Marchese, L.: Aluminum magadiite: an acid solid layered material. Chem. Mater. 19, 4300–4315 (2007)CrossRefGoogle Scholar
  37. 37.
    Pastore, H.O., Munsignatti, M., Mascarenhas, A.J.S.: One-step synthesis of alkyltrimethylammonium-intercalated magadiite. Clays Clay Miner. 48, 224–229 (2000)CrossRefGoogle Scholar
  38. 38.
    Niu, P.Y., Liu, P., Xi, H.J., Lin, M.G., Wang, J.G., Chen, X.Y., Jia, L.T., Wang, P.F., Hou, B., Li, D.B.: Crystallization mechanism of pure-silica ZSM-22 in the seed-assistant system. Cryst. Growth Des. 18, 6591–6601 (2018)CrossRefGoogle Scholar
  39. 39.
    Xie, B., Zhang, H.Y., Yang, C.G., Liu, S.Y., Ren, L.M., Zhang, L., Zhang, X.J., Yilmaz, B., Muller, U., Xiao, F.S.: Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chem. Commun. 47, 3945–3947 (2011)CrossRefGoogle Scholar
  40. 40.
    Wen, D.F., Liu, Q., Fei, Z.Y., Yang, Y.R., Zhang, Z.X., Chen, X., Tang, J.H., Cui, M.F., Cui, X.: Organosilane-assisted synthesis of hierarchical porous ZSM-5 zeolite as a durable catalyst for light-olefins production from chloromethane. Ind. Eng. Chem. Res. 57, 446–455 (2018)CrossRefGoogle Scholar
  41. 41.
    Müller, D., Gessner, W., Behrens, H.J., Scheler, G.: Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27AI NMR. Chem. Phys. Lett. 79, 59–62 (1981)CrossRefGoogle Scholar
  42. 42.
    Kamimura, Y., Itabashi, K., Okubo, T.: Seed-assisted, OSDA-free synthesis of MTW-type zeolite and ‘‘Green MTW’’ from sodium aluminosilicate gel systems. Microporous Mesoporous Mater. 147, 149–156 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Peng Zhang
    • 1
  • Suqin Li
    • 1
    Email author
  • Penghui Guo
    • 1
  • Changquan Zhang
    • 1
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations