Advertisement

Bio-hydrogen Production from Sewage Sludge: Screening for Pretreatments and Semi-continuous Reactor Operation

  • Mohamed El-QelishEmail author
  • Pritha Chatterjee
  • Paolo Dessì
  • Marika Kokko
  • Fatma El-Gohary
  • Mohamed Abo-Aly
  • Jukka Rintala
Original Paper
  • 79 Downloads

Abstract

The high volumes of sewage sludge produced have raised interests for simultaneous treatment and clean energy production, e.g. in the form of hydrogen. Pretreatment of sewage sludge is required to enhance microbial degradation and in turn hydrogen yield from sewage sludge. The potential of five substrate pretreatments, individually and in combinations, to increase biohydrogen production from mixed primary and secondary sewage sludge at four incubation pH (5, 7, 9, and 11) was studied in batch assays. Alkali + ultrasonication pretreatment increased the hydrogen production almost seven times (0.35 mmol H2/g VS) compared to untreated sewage sludge at initial pH 11. In general, higher hydrogen yields and lower acetate concentrations were obtained under alkaline conditions (pH 9 and 11), being more favorable for protein degradation and not favorable for hydrogen consumption via homoacetogenesis. Subsequently, fermentation of alkali + ultrasonication pretreated sewage sludge in a semi-continuous stirred tank reactor (CSTR) produced a maximum hydrogen yield of 0.1 mmol H2/g VS, three times higher than the yield obtained from alkali pretreated sludge. The gas produced in the CSTRs contained a low concentration of CO2 (< 5%), and is thus easily upgradable to biohydrogen.

Graphic Abstract

Keywords

Alkali treatment Continuously stirred tank reactor (CSTR) Dark fermentation Pretreatment Sewage sludge Ultrasonication 

Notes

Acknowledgements

The financial support received from the Finnish National Agency for Education (Finnish Government Scholarship Pool) and Ministry of Higher Education and Scientific Research of Egypt (MOHESR) is duly acknowledged. The authors gratefully thank the Viinikanlahti municipal wastewater treatment plant (Tampere, Finland) for providing the raw materials.

Supplementary material

12649_2019_743_MOESM1_ESM.docx (102 kb)
Supplementary material 1 (DOCX 101 kb)

References

  1. 1.
    Kangas, A.: Sewage sludge treatment and utilization in Finland (2017)Google Scholar
  2. 2.
    Wang, C.C., Chang, C.W., Chu, C.P., Lee, D.J., Chang, B.V., Liao, C.S., Tay, J.H.: Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res. 37, 2789–2793 (2003)CrossRefGoogle Scholar
  3. 3.
    Hosseini, S.E., Wahid, M.A.: Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866 (2016)CrossRefGoogle Scholar
  4. 4.
    Xiao, B., Liu, J.: Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. J. Hazard. Mater. 168, 163–167 (2009)CrossRefGoogle Scholar
  5. 5.
    Guo, L., Lu, M., Li, Q., Zhang, J., She, Z.: A comparison of different pretreatments on hydrogen fermentation from waste sludge by fluorescence excitation-emission matrix with regional integration analysis. Int. J. Hydrog. Energy 40, 197–208 (2015)CrossRefGoogle Scholar
  6. 6.
    Zhang, M.L., Fan, Y.T., Xing, Y., Pan, C.M., Zhang, G.S., Lay, J.J.: Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31, 250–254 (2007)CrossRefGoogle Scholar
  7. 7.
    Shin, H.S., Youn, J.H.: Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16, 33–44 (2005)CrossRefGoogle Scholar
  8. 8.
    Zheng, H.S., Guo, W.Q., Yang, S.S., Feng, X.C., Du, J.S., Zhou, X.J., Chang, J.S., Ren, N.Q.: Thermophilic hydrogen production from sludge pretreated by thermophilic bacteria: analysis of the advantages of microbial community and metabolism. Bioresour. Technol. 172, 433–437 (2014)CrossRefGoogle Scholar
  9. 9.
    Bougrier, C., Carrère, H., Delgenès, J.P.: Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 106, 163–169 (2005)CrossRefGoogle Scholar
  10. 10.
    Weemaes, M.P.J., Verstraete, W.H.: Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. 73, 83–92 (1998)CrossRefGoogle Scholar
  11. 11.
    Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G.: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025–2029 (2006)CrossRefGoogle Scholar
  12. 12.
    Yin, Y., Wang, J.: Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production. Radiat. Phys. Chem. 121, 110–114 (2016)CrossRefGoogle Scholar
  13. 13.
    Assawamongkholsiri, T., Reungsang, A., Pattra, S.: Effect of acid, heat and combined acid-heat pretreatments of anaerobic sludge on hydrogen production by anaerobic mixed cultures. Int. J. Hydrog. Energy 38, 6146–6153 (2013)CrossRefGoogle Scholar
  14. 14.
    Bundhoo, M.A.Z., Mohee, R., Hassan, M.A.: Effects of pre-treatment technologies on dark fermentative biohydrogen production: a review. J. Environ. Manag. 157, 20–48 (2015)CrossRefGoogle Scholar
  15. 15.
    Xiao, B., Liu, J.: Effects of various pretreatments on biohydrogen production from sewage sludge. Chin. Sci. Bull. 54, 2038–2044 (2009)Google Scholar
  16. 16.
    Cai, M., Liu, J., Wei, Y.: Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ. Sci. Technol. 38, 3195–3202 (2004)CrossRefGoogle Scholar
  17. 17.
    Zhao, Y., Chen, Y., Zhang, D., Zhu, X.: Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH. Environ. Sci. Technol. 44, 3317–3323 (2010)CrossRefGoogle Scholar
  18. 18.
    Kavitha, S., Yukesh Kannah, R., Yeom, I.T., Do, K.U., Banu, J.R.: Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Bioresour. Technol. 197, 383–392 (2015)CrossRefGoogle Scholar
  19. 19.
    Kim, D.H., Jeong, E., Oh, S.E., Shin, H.S.: Combined (alkaline + ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 44, 3093–3100 (2010)CrossRefGoogle Scholar
  20. 20.
    Yang, S.S., Guo, W.Q., Cao, G.L., Zheng, H.S., Ren, N.Q.: Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour. Technol. 124, 347–354 (2012)CrossRefGoogle Scholar
  21. 21.
    Wan, J., Jing, Y., Zhang, S., Angelidaki, I., Luo, G.: Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: focusing on homoacetogenesis. Water Res. 102, 524–532 (2016)CrossRefGoogle Scholar
  22. 22.
    Fang, H.H.P., Liu, H.: Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82, 87–93 (2002)CrossRefGoogle Scholar
  23. 23.
    Penniston, J., Gueguim Kana, E.B.: Impact of medium pH regulation on biohydrogen production in dark fermentation process using suspended and immobilized microbial cells. Biotechnol. Biotechnol. Equip. 32, 204–212 (2018)CrossRefGoogle Scholar
  24. 24.
    Thonart, P., Hamilton, C., Calusinska, M., Wilmotte, A., Hiligsmann, S., Joris, B., Masset, J.: Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol. Biofuels 5, 35 (2012)CrossRefGoogle Scholar
  25. 25.
    Chenlin, L., Herbert, F.: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37, 1–39 (2007)CrossRefGoogle Scholar
  26. 26.
    Gorlenko, V., Tsapin, A., Namsaraev, Z., Teal, T., Tourova, T., Engler, D., Mielke, R., Nealson, K.: Anaerobranca californiensis sp. nov., an anaerobic alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int. J. Syst. Evol. Microbiol. 54, 739–743 (2004)CrossRefGoogle Scholar
  27. 27.
    Alibardi, L., Cossu, R.: Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag. 47, 69–77 (2016)CrossRefGoogle Scholar
  28. 28.
    Koskinen, P.E.P., Lay, C.H., Puhakka, J.A., Lin, P.J., Wu, S.Y., Örlygsson, J., Lin, C.Y.: High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an icelandic hot spring. Biotechnol. Bioeng. 101, 665–678 (2008)CrossRefGoogle Scholar
  29. 29.
    Owen, W.F., Stuckey, D.C., Healy, J.B., Young, L.Y., McCarty, P.L.: Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492 (1979)CrossRefGoogle Scholar
  30. 30.
    Nissilä, M.E., Tähti, H.P., Rintala, J.A., Puhakka, J.A.: Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Bioresour. Technol. 102, 4501–4506 (2011)CrossRefGoogle Scholar
  31. 31.
    Logan, B.E., Oh, S.E., Kim, I.S., Van Ginkel, S.: Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36, 2530–2535 (2002)CrossRefGoogle Scholar
  32. 32.
    Dessì, P., Lakaniemi, A.M., Lens, P.N.L.: Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 & °C. Water Res. 115, 120–129 (2017)CrossRefGoogle Scholar
  33. 33.
    APHA/AWWA/WEF: Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington (2012)Google Scholar
  34. 34.
    Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for experimenters: an introduction to design, data analysis, and model building, 1st edn, p. 653. Wiley, New York (1978)zbMATHGoogle Scholar
  35. 35.
    Guo, L., Li, X.M., Bo, X., Yang, Q., Zeng, G.M., Liao, D.X., Liu, J.J.: Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour. Technol. 99, 3651–3658 (2008)CrossRefGoogle Scholar
  36. 36.
    Tanaka, S., Kamiyama, K.: Thermochemical pretreatment in the anaerobic digestion of waste activated sludge. Water Sci. Technol. 46, 173–179 (2002)CrossRefGoogle Scholar
  37. 37.
    Lin, C.Y., Hung, C.H., Chen, C.H., Chung, W.T., Cheng, L.H.: Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Process Biochem. 41, 1383–1390 (2006)CrossRefGoogle Scholar
  38. 38.
    Saady, N.M.C.: Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int. J. Hydrog. Energy 38, 13172–13191 (2013)CrossRefGoogle Scholar
  39. 39.
    Luo, G., Karakashev, D., Xie, L., Zhou, Q., Angelidaki, I.: Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol. Bioeng. 108, 1816–1827 (2011)CrossRefGoogle Scholar
  40. 40.
    Bundhoo, M.A.Z., Mohee, R.: Inhibition of dark fermentative bio-hydrogen production: a review. Int. J. Hydrog. Energy 41, 6713–6733 (2016)CrossRefGoogle Scholar
  41. 41.
    Lay, J., Lee, Y., Noike, T.: Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res. 33, 2579–2586 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesTampere UniversityTampereFinland
  2. 2.Water Pollution Research DepartmentNational Research CentreCairoEgypt
  3. 3.Department of Civil EngineeringIndian Institute of Technology HyderabadKandiIndia
  4. 4.National University of Ireland GalwayGalwayIreland
  5. 5.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations