Waste and Biomass Valorization

, Volume 10, Issue 12, pp 3809–3819 | Cite as

A Feasible Application of Circular Economy: Spent Grain Energy Recovery in the Beer Industry

  • I. OrtizEmail author
  • Y. Torreiro
  • G. Molina
  • M. Maroño
  • J. M. Sánchez
Original Paper


The generation of residual streams and wastes is a common constant in all productive processes. The brewing sector generates a large quantity of residual by-products which can be sustainably reused within the industry to contribute to cover the energy requirement of the process and at the same time to contribute to minimize the amount of waste that is sent to landfills. In this paper the feasibility and advantages of incorporating a stage for energy recovery from some of the solid wastes generated during the process as part of the circular economy approach is presented. La Cibeles, a local small size beer process is taken as a real example. In a brewing process the main wastes that are produced are: grain husks, yeast and CO2. Out of the three, the most important one is the grain husk or brewers’ spent grain that can make around 85% of the total waste of a brewery. The results presented in this study show that, by gasification of brewers’ spent grain, not only the final volume of the residue to be disposed is considerably minimised, but also it is possible to obtain a net economic saving of around 22% in the consume of fossil fuels used in the brewing process when the syngas produced is used for heat generation.


Circular economy Energy recovery Waste gasification Beer bagasse Brewers’ spent grain 



The authors wish to thank the Regional Government of Madrid for its financial support through the RETOPROSOST Project (P2013/MAE-2907). We also thank La Cibeles, S. L. for providing the data for this study.


  1. 1.
    The Brewers of Europe: The Contribution made by Beer to the European Economy. In. Region Plan Policy Research and EY (2013)Google Scholar
  2. 2.
    Kawa, A., Luczyk, I.: CSR in supply chains of brewing industry. In: Golinska, P., Kawa, A. (eds.) Technology Management for Sustainable Production and Logistics. EcoProduction, pp. 97–118. Springer, Berlin (2015)CrossRefGoogle Scholar
  3. 3.
    Kerby, C., Vriesekoop, F.: An overview of the utilization of brewery by-products as generated by british craft breweries. Beverages 3(24), 1–12 (2017). CrossRefGoogle Scholar
  4. 4.
    El economista: la producción de cervezas artesanales en España se disparó un 36% en 2017. (2018). Accessed Jan 2019
  5. 5.
    Olajire, A.A.: The brewing industry and environmental challenges. J. Clean. Prod. (2012). CrossRefGoogle Scholar
  6. 6.
    Agency, E.E.: Circular economy in Europe. Developing the Knowledge Base. In., vol. EEA Report No 2/2016, p. 42. EEA, Luxembourg (2016)Google Scholar
  7. 7.
    European Commission: The opportunities to business of improving resource efficiency. Final Report. In: AMEC Environment & Infrastructure and Bio Intelligence Service (2013)Google Scholar
  8. 8.
    Association, B.: Solid Waste Reduction Manual. In: Brewers Association,Google Scholar
  9. 9.
    European Commission: The role of waste-to-energy in the circular economy. In: (vol. COM, p. 11). European Commission (2017)Google Scholar
  10. 10.
    Mussatto, S.I.: Brewer’s spent grain: a valuable feedstock for industrial applications. J. Sci. Food Agric. 94(7), 1264–1275 (2014). CrossRefGoogle Scholar
  11. 11.
    dos Santos Mathias, T.R., de Mello, P.P.M., Sérvulo, E.F.C.: Solid wastes in brewing process: a review. J. Brew. Distill 5(1), 1–19 (2014). CrossRefGoogle Scholar
  12. 12.
    Weger, A., Jung, R., Stenzel, F., Hornung, A.: Optimized energetic usage of brewers’ spent grains. Chem. Eng. Technol. 40(2), 306–312 (2017). CrossRefGoogle Scholar
  13. 13.
    Mejores técnicas disponibles en el sector cervecero. In: AINIA-Instituto Tecnológico Agroalimentario, p. 119Google Scholar
  14. 14.
    Mussatto, S.I., Dragone, G., Roberto, I.C.: Brewers’ spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43(1), 1–14 (2006). CrossRefGoogle Scholar
  15. 15.
    Pérez, V., Murillo, J.M., Bados, R., Esteban, L.S., Ramos, R., Sánchez, J.M.: Preparation and gasification of brewers’ spent grains. In: 5th International Conference on Sustainable Solid Waste, Athens, 2017Google Scholar
  16. 16.
    Phyllis2. Database for biomass and waste. ECN. Accessed 2018Google Scholar
  17. 17.
    Torreiro, Y., Ortiz, I., Molina, G., Maroño, M., Pérez, V., Murillo, J.M., Ramos, R., Fernández, M., García, S., Sánchez, J.M.: Thermochemical assessment of Nicotiana glauca, Panicum virgatum and Elytrigia elongata as fuels for energy recovery through gasification. Fuel 225, 71–79 (2018). CrossRefGoogle Scholar
  18. 18.
    Jenkins, B.M., Baxter, L.L., Miles, T.R., Miles, T.R.: Combustion properties of biomass. Fuel Process. Technol. 54(1), 17–46 (1998). CrossRefGoogle Scholar
  19. 19.
    Thomas, K.R., Rahman, P.K.S.M.: Brewery wastes. Strategies for sustainability. A review. ASP Appl Biol 8, 147–153 (2006)Google Scholar
  20. 20.
    Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, Sr, Ahrenfeldt, J., Henriksen, U.B.: Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90(11), 3285–3290 (2011)CrossRefGoogle Scholar
  21. 21.
    Stelte, W., Clemons, C., Holm, J.K., Sanadi, A.R., Ahrenfeldt, J., Shang, L., Henriksen, U.B.: Pelletizing properties of torrefied spruce. Biomass Bioenerg. 35(11), 4690–4698 (2011)CrossRefGoogle Scholar
  22. 22.
    Zafar, S.: Biomass Pelletization Process. (2018)Google Scholar
  23. 23.
    Pascual, L.S.E.: Fuel preparation. Paper presented at the summer school: advanced concepts and process schemes for CO2 free fluidised and entrained bed co-gasification of coals, Madrid, 3–6 JulyGoogle Scholar
  24. 24.
    Pirraglia, A., Gonzalez, R., Saloni, D.: Wood pellets feasibility. Bioresource 5(4), 2374–2390 (2010)Google Scholar
  25. 25.
    Higman, C., Burgt, M.V.D.: Gasification, 2nd edn. Gulf Professional Publishing, Amsterdam (2008)Google Scholar
  26. 26.
    Sikarwar, V.S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M.Z., Shah, N., Anthony, E.J., Fennell, P.S.: An overview of advances in biomass gasification. Energy Environ. Sci. 9(10), 2939–2977 (2016). CrossRefGoogle Scholar
  27. 27.
    Narváez, I., Orío, A., Aznar, M.P., Corella, J.: Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Ind. Eng. Chem. Res. 35(7), 2110–2120 (1996). CrossRefGoogle Scholar
  28. 28.
    Toledo, J.M., Corella, J., Molina, G.: Catalytic hot gas cleaning with monoliths in biomass gasification in fluidized beds. 4. Performance of an advanced, second-generation, two-layers-based monolithic reactor. Ind. Eng. Chem. Res. 45(4), 1389–1396 (2006)CrossRefGoogle Scholar
  29. 29.
    Arena, U., Di Gregorio, F., Santonastasi, M.: A techno-economic comparison between two design configurations for a small scale biomass-to-energy gasification based system. Chem. Eng. J. 162, 580–590 (2010)CrossRefGoogle Scholar
  30. 30.
    Sanz, A., Corella, J.: Modeling circulating fluidized bed biomass gasifiers Results from a pseudo-rigorous 1-dimensional model for stationary state. Fuel Process. Technol. 87(3), 247–258 (2006). CrossRefGoogle Scholar
  31. 31.
    Nikoo, M.B., Mahinpey, N.: Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenerg. 32, 1245 (2008)CrossRefGoogle Scholar
  32. 32.
    Sahoo, A., Ram, D.K.: Gasifier performance and energy analysis for fluidized bed gasification of sugarcane bagasse. Energy 90, 1420–1425 (2015). CrossRefGoogle Scholar
  33. 33.
    The utilisation of brewery waste (1923) Scholar
  34. 34.
    Karatas, H., Olgun, H., Akgun, F.: Experimental results of gasification of waste tire with air&CO2, air & steam and steam in a bubbling fluidized bed gasifier. Fuel Process. Technol. 102, 166–174 (2012). CrossRefGoogle Scholar
  35. 35.
    Garcia, L., Salvador, M.L., Arauzo, J., Bilbao, R.: CO2 as a gasifying agent for gas production from pine sawdust at low temperatures using a Ni/Al coprecipitated catalyst. Fuel Process. Technol. 69(2), 157–174 (2001). CrossRefGoogle Scholar
  36. 36.
    Abdoulmoumine, N., Adhikari, S., Kulkarni, A., Chattanathan, S.: A review on biomass gasification syngas cleanup. Appl. Energ. 155, 294–307 (2015). CrossRefGoogle Scholar
  37. 37.
    Woolcock, P.J., Brown, R.C.: A review of cleaning technologies for biomass-derived syngas. Biomass Bioenerg. 52, 54–84 (2013). CrossRefGoogle Scholar
  38. 38.
    Balas, M., Lisy, M., Skala, Z., Pospisil, J.: Wet scrubber for cleaning of syngas from biomass gasification. In: Advances in Environmental Sciences, Development and Chemistry, Santorini Island, Greece, July 17–21, 2014, pp. 195–201 (2014)Google Scholar
  39. 39.
    Boer, E.D., Hoen, M.T.: Scrubbers—an economic and ecological assessment. In: Delft, C. (ed.). p. 45, NABU, Delft (2015)Google Scholar
  40. 40.
  41. 41.
    Ministerio de Industria, Comercio y Turismo: Precio neto de la electricidad para uso doméstico y uso industrial. (2018). Accessed Jan 2019
  42. 42.
    Ministerio de Industria, Comercio y Turismo: EVOLUCIÓN PRECIOS DEL GASÓLEO. (2019). Accessed Jan 2019

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Sustainable Thermochemical Valorisation UnitCIEMATMadridSpain

Personalised recommendations