Advertisement

Water Hyacinth–Cement Composites as Pollutant Element Fixers

  • Adela Salas-RuizEmail author
  • María Mar Barbero-Barrera
  • María Isabel Sánchez-Rojas
  • Eloy Asensio
Original Paper
  • 15 Downloads

Abstract

Water hyacinth (WH) or Eichhornia crassipes is one of the 100 most dangerous invasive species in the world. Currently, WH has enormous negative impacts on various ecosystems, and its eradication poses a seemingly impossible challenge. Physical extraction has been found to be an adequate process for controlling the spread of WH, but sustainable waste management of WH has not been achieved due to its ability to absorb pollutants. In this study, preliminary research on the possibility of using water hyacinth root ash (WHRA) as an alternative to pozzolans in cement matrices in order to fix these pollutants is presented. Characterization of the samples was carried out by XRF, SEM, BSE, EDX, ICP-OES, XRD and FTIR. A complete study of the pozzolanic activity and hydrated products of WHRA was conducted. Mechanical characterization of 25% replacement mortars was evaluated, and a pollutant fixed/leaching characterization was made. The results indicate that WHRA reacts with calcium ions and other pollutants. Thus, WHRA–cement mortars can be utilized as a green method of fixing the pollutants present in WHRA. The incorporation of WHRA is suitable as a cement addition for non-structural constructive elements, such as pavements or precast products. WHRA–cement composite is a low-cost, greener material, which promotes the reuse of waste and pollutant elimination.

Graphical Abstract

Keywords

Water hyacinth root ash Invasive species Pollutant ash Pozzolanic activity Waste valorization Sustainable construction 

Notes

Acknowledgement

The authors gratefully acknowledge the Botany Area of University of Extremadura (Spain) for the logistical support offered.

Funding

This research received funding from several Agencia Estatal de Investigación Spanish ministries under projects: Grant Nos. BIA2013-48876-C3-1-R, BIA2013-48876-C3-2-R and BIA2016-76643-C3-1-R.

References

  1. 1.
    Téllez, T.R., López, E., Granado, G., Pérez, E., López, R., Guzmán, J.: The Water Hyacinth, Eichhornia Crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquat. Invasions 3, 42–53 (2008).  https://doi.org/10.3391/ai.2008.3.1.8 CrossRefGoogle Scholar
  2. 2.
    EPPO/OEPP: Eichhornia crassipes. Bull. OEPP/EPPO 38, 441–449 (2008)CrossRefGoogle Scholar
  3. 3.
    Albano, Pérez E., Ruiz, Téllez T., Ramos, Maqueda S., Casero Linares, P.J., Vázquez Pardo, F.M., Rodriguez Medina, P.L., Labrador, Moreno J., López, Gallego F., González, Cortés J., Sánchez Guzmán, J.M.: Seed germination and risks of using the invasive plant Eichhornia crassipes (Mart.) Solms-Laub. (water hyacinth) for composting, ovine feeding and biogas production. Acta Bot. Gall. 162, 203–214 (2015).  https://doi.org/10.1080/12538078.2015.1056227 CrossRefGoogle Scholar
  4. 4.
    Güereña, D., Neufeldt, H., Berazneva, J., Duby, S.: Water hyacinth control in Lake Victoria: transforming an ecological catastrophe into economic, social, and environmental benefits. Sustain. Prod. Consum. 3, 59–69 (2015).  https://doi.org/10.1016/j.spc.2015.06.003 CrossRefGoogle Scholar
  5. 5.
    Mbula, M.: Impacts of Water Hyacinth on socio-economic activitives on Kafubu River in the Copperbelt Province: A Case Study of Ndola District, Zambia. A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Integrated Water Resources Management of the University of Dar es Salaam (2016) http://www.waternetonline.org/download/data/download/00000130/Mercy-Mbula-Final-Dissertation.pdf (accessed March 8, 2019)
  6. 6.
    United Nations Environment Programme (UNEP): Water hyacinth—can its aggressive invasion be controlled? Unep- Glob. Environ. Alert Serv. 7, 1–17 (2013).  https://doi.org/10.1016/j.envdev.2013.05.002 Google Scholar
  7. 7.
    Su, W., Sun, Q., Xia, M., Wen, Z., Yao, Z.: The resource utilization of Water Hyacinth (Eichhornia crassipes [Mart.] Solms) and its challenges. Resources 7, 12 (2018).  https://doi.org/10.3390/resources7030046 CrossRefGoogle Scholar
  8. 8.
    Adeoye, G.O., Sridhar, M.K.C., Ipinmoroti, R.R.: Potassium recovery from farm wastes for crop growth. Commun. Soil Sci. Plant Anal. 32, 2347–2358 (2001).  https://doi.org/10.1081/CSS-120000377 CrossRefGoogle Scholar
  9. 9.
    Hermoso-López Araiza, J.P., Quecholac-Piña, X., Beltrán-Villavicencio, M., Espinosa-Valdemar, R.M., Vázquez-Morillas, A.: Integral valorization of the Water Hyacinth from the Canals of Xochimilco: production of edible mushrooms and forage. Waste Biomass Valor. 7, 1203–1210 (2016).  https://doi.org/10.1007/s12649-016-9526-0 CrossRefGoogle Scholar
  10. 10.
    Kumari, S., Das, D.: Biohythane production from sugarcane bagasse and water hyacinth: a way towards promising green energy production. J. Clean. Prod. 207, 689–701 (2019).  https://doi.org/10.1016/J.JCLEPRO.2018.10.050 CrossRefGoogle Scholar
  11. 11.
    Manivannan, A., Narendhirakannan, R.T.: Bioethanol production from aquatic weed Water Hyacinth (Eichhornia crassipes) by yeast fermentation. Waste Biomass Valor. 6, 209–216 (2015).  https://doi.org/10.1007/s12649-015-9347-6 CrossRefGoogle Scholar
  12. 12.
    Rezania, S., Din, M.F.M., Taib, S.M., Mohamad, S.E., Dahalan, F.A., Kamyab, H., Darajeh, N., Ebrahimi, S.S.: Ethanol production from Water Hyacinth (Eichhornia crassipes) using various types of enhancers based on the consumable sugars. Waste Biomass Valor. 9, 939–946 (2018).  https://doi.org/10.1007/s12649-017-9883-3 CrossRefGoogle Scholar
  13. 13.
    Brunerová, A., Roubik, H., Brozek, M.: Agricultural residues in Indonesia and Vietnam and their potential for direct combustion: with a focus on fruit processing and plantation crops. Agron. Res. 16, 656–668 (2018).  https://doi.org/10.15159/AR.18.113 Google Scholar
  14. 14.
    Gunnarsson, C.C., Petersen, C.M.: Water Hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag. 27, 117–129 (2007).  https://doi.org/10.1016/j.wasman.2005.12.011 CrossRefGoogle Scholar
  15. 15.
    Rezania, S., Md Din, M.F., Kamaruddin, S.F., Taib, S.M., Singh, L., Yong, E.L., Dahalan, F.A.: Evaluation of Water Hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production. Energy 111, 768–773 (2016).  https://doi.org/10.1016/j.energy.2016.06.026 CrossRefGoogle Scholar
  16. 16.
    Rezania, S., Ponraj, M., Din, M.F.M., Songip, A.R., Sairan, F.M., Chelliapan, S.: The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew. Sustain. Energy Rev. 41, 943–954 (2015).  https://doi.org/10.1016/J.RSER.2014.09.006 CrossRefGoogle Scholar
  17. 17.
    Carnaje, N.P., Talagon, R.B., Peralta, J.P., Shah, K., Paz-Ferreiro, J.: Development and characterisation of charcoal briquettes from water hyacinth (Eichhornia crassipes)-molasses blend. PLoS ONE 13(11), e0207135 (2018).  https://doi.org/10.1371/journal.pone.0207135 CrossRefGoogle Scholar
  18. 18.
    Mahamadi, C.: Water hyacinth as a biosorbent: a review. Afr. J. Environ. Sci. Technol. 5, 1137–1145 (2012).  https://doi.org/10.5897/AJESTX11.007 CrossRefGoogle Scholar
  19. 19.
    Mishra, S., Maiti, A.: The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ. Sci. Pollut. Res. 24, 7921–7937 (2017).  https://doi.org/10.1007/s11356-016-8357-7 CrossRefGoogle Scholar
  20. 20.
    Ahmad, P.: Plant metal interaction emerging remediation techniques. Elservier, Amsterdam, Netherland (2016)Google Scholar
  21. 21.
    Chen, Q.Y., Tyrer, M., Hills, C.D., Yang, X.M., Carey, P.: Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manag. 29, 390–403 (2009).  https://doi.org/10.1016/j.wasman.2008.01.019 CrossRefGoogle Scholar
  22. 22.
    Li, X., Chen, Q., Zhou, Y., Tyrer, M., Yu, Y.: Stabilization of heavy metals in MSWI fly ash using silica fume. Waste Manag. 34, 2494–2504 (2014).  https://doi.org/10.1016/j.wasman.2014.08.027 CrossRefGoogle Scholar
  23. 23.
    Pavlík, Z., Fořt, J., Záleská, M., Pavlíková, M., Trník, A., Medved, I., Keppert, M., Koutsoukos, P.G., Černý, R.: Energy-efficient thermal treatment of sewage sludge for its application in blended cements. J. Clean. Prod. 112, 409–419 (2016).  https://doi.org/10.1016/J.JCLEPRO.2015.09.072 CrossRefGoogle Scholar
  24. 24.
    Aprianti, S.E.: A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production - a review part II. J. Clean. Prod. 142, 4178–4194 (2015).  https://doi.org/10.1016/j.jclepro.2015.12.115 CrossRefGoogle Scholar
  25. 25.
    Ay, N., Ünal, M.: The use of waste ceramic tile in cement production. Cem. Concr. Res. 30, 497–499 (2000).  https://doi.org/10.1016/S0008-8846(00)00202-7 CrossRefGoogle Scholar
  26. 26.
    García de las Lomas-Gómez, M.: Viabilidad científica, técnica y medioambiental del Catalizador Gastado de Craqueo Catalíco (FCC) como material puzolánico, Autonomous University of Madrid (2015)Google Scholar
  27. 27.
    Paris, J.M., Roessler, J.G., Ferraro, C.C., DeFord, H.D., Townsend, T.G.: A review of waste products utilized as supplements to Portland cement in concrete. J. Clean. Prod. 121, 1–18 (2016).  https://doi.org/10.1016/j.jclepro.2016.02.013 CrossRefGoogle Scholar
  28. 28.
    Asensio, E., Medina, C., Frías, M., Sanchez de Rojas, M.I.: Characterization of ceramic-based construction and demolition waste: use as pozzolan in cements. J. Am. Ceram. Soc. 99, 4121–4127 (2016).  https://doi.org/10.1111/jace.14437 CrossRefGoogle Scholar
  29. 29.
    Garcés, P., Pérez Carrión, M., García-Alcocel, E., Payá, J., Monzó, J., Borrachero, M.V.: Mechanical and physical properties of cement blended with sewage sludge ash. Waste Manag. 28, 2495–2502 (2008).  https://doi.org/10.1016/j.wasman.2008.02.019 CrossRefGoogle Scholar
  30. 30.
    Tantawy, M.A., El-Roudi, A.M., Abdalla, E.M., Abdelzaher, M.A.: Evaluation of the pozzolanic activity of sewage sludge ash. ISRN Chem. Eng. 2012, 1–8 (2012).  https://doi.org/10.5402/2012/487037 CrossRefGoogle Scholar
  31. 31.
    Hashemi, S.S., Mahmud, H.B., Djobo, J.N.Y., Ghuan-Tan, C., Chin-Ang, B., Ranjbar, N.: Microstructural characterization and mechanical properties of bottom ash mortar. J. Clean. Prod. 170, 797–804 (2018).  https://doi.org/10.1016/j.jclepro.2017.09.191 CrossRefGoogle Scholar
  32. 32.
    Aprianti, E., Shafigh, P., Bahri, S., Farahani, J.N.: Supplementary cementitious materials origin from agricultural wastes—a review. Constr. Build. Mater. 74, 176–187 (2015).  https://doi.org/10.1016/j.conbuildmat.2014.10.010 CrossRefGoogle Scholar
  33. 33.
    Morales, E.V., Villar-Cociña, E., Frías, M., Santos, S.F., Savastano, H.: Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): influence in the pozzolanic activation. Cem. Concr. Compos. 31, 22–28 (2009).  https://doi.org/10.1016/j.cemconcomp.2008.10.004 CrossRefGoogle Scholar
  34. 34.
    Mo, K.H., Alengaram, U.J., Jumaat, M.Z., Yap, S.P., Lee, S.C.: Green concrete partially comprised of farming waste residues: a review. J. Clean. Prod. 117, 122–138 (2016).  https://doi.org/10.1016/j.jclepro.2016.01.022 CrossRefGoogle Scholar
  35. 35.
    Umoh, A.A., Odesola, I.: Characteristics of bamboo leaf ash blended cement paste and mortar. Civ. Eng. Dimens. 17, 22–28 (2015).  https://doi.org/10.9744/ced.17.1.22-28 Google Scholar
  36. 36.
    Kanning, R.C., Portella, K.F., Bragança, M.O.G.P., Bonato, M.M., Dos Santos, J.C.M.: Banana leaves ashes as pozzolan for concrete and mortar of Portland cement. Constr. Build. Mater. 54, 460–465 (2014).  https://doi.org/10.1016/j.conbuildmat.2013.12.030 CrossRefGoogle Scholar
  37. 37.
    Nakanishi, E.Y., Frías, M., Santos, S.F., Rodrigues, M.S., Vigil de la Villa, R., Rodriguez, O., Junior, H.S.: Investigating the possible usage of elephant grass ash to manufacture the eco-friendly binary cements. J. Clean. Prod. 116, 236–243 (2015).  https://doi.org/10.1016/j.jclepro.2015.12.113 CrossRefGoogle Scholar
  38. 38.
    Cobreros, C., Reyes-Araiza, J.L., Manzano-Ramírez, A., Nava, R., Rodríguez, M., Mondragón-Figueroa, M., Apátiga, L.M., Rivera-Muñoz, E.M.: Barley straw ash: pozzolanic activity and comparison with other natural and artificial pozzolans from Mexico. BioResources 10, 3757–3774 (2015).  https://doi.org/10.15376/biores.10.2.3737-3774 CrossRefGoogle Scholar
  39. 39.
    Riding, K.A., Ataie, F.F.: Multiscale chemico-thermo-hydro-mechanical modeling of early-stage hydration and shrinkage of cement compounds. J. Mater. Civ. Eng. 27, 1239–1247 (2013).  https://doi.org/10.1061/(ASCE)MT Google Scholar
  40. 40.
    Lara-Serrano, J.S., Rutiaga-Quiñones, O.M., López-Miranda, J., Fileto-Pérez, H.A., Pedraza-Bucio, F.E., Rico-Cerda, J.L., Rutiaga-Quiñones, J.G.: Physicochemical characterization of Water Hyacinth (Eichhornia crassipes (Mart) Solms). BioResources 11, 7214–7223 (2016).  https://doi.org/10.15376/biores.11.3.7214-7223 CrossRefGoogle Scholar
  41. 41.
    Makhlouf, A.A.A.H.: Application of Water Hyacinth Ash as a partial replacement for cement, Cairo University, (2002)Google Scholar
  42. 42.
    Abdel-Hay, A.S., Fawzy-Ghany, Y.A.: Impact of Water Hyacinth on properties of concrete made with various gravel to dolomite ratios. In: Third Intl. Conf. Advances in Civil, Structural and Mechanical Engineering-CSM. pp. 76–80. Institute of Research Engineers and Doctors, USA (2015).  https://doi.org/10.15224/978-1-63248-062-0-59
  43. 43.
    Das, N., Singh, S.: Evaluation of Water Hyacinth stem ash as pozzolanic material for use in blended cement. J. Civ. Eng. Sci. Technol. 7, 1–8 (2016).  https://doi.org/10.33736/jcest.150.2016 CrossRefGoogle Scholar
  44. 44.
    Nakanishi, E.Y., Villar-Cociña, E., Santos, S.F., Rodrigues, M.S., Pinto, P.S., Savastano, H.: Thermal and chemical treatments for removal of alkali oxides of elephant grass ashes. Quim. Nova 37, 766–769 (2014).  https://doi.org/10.5935/0100-4042.20140123 Google Scholar
  45. 45.
    Lea, F.M.: Lea’s Chemistry of Cement and Concrete. Elsevier, Amsterdam (1935)Google Scholar
  46. 46.
    Thomas, M.: The effect of supplementary cementing materials on alkali-silica reaction: a review. Cem. Concr. Res. 41, 1224–1231 (2011).  https://doi.org/10.1016/j.cemconres.2010.11.003 CrossRefGoogle Scholar
  47. 47.
    United States Environmental Protection Agency (US-EPA) 600/4-79-020: Methods for Chemical Analysis of Water and Wastes. United States Environmental Protection Agency, Washington, DC (1983)Google Scholar
  48. 48.
    EN 197-1: European Standard for Cement. Part 1: Composition, specifications and conformity criteria for common cements (2011)Google Scholar
  49. 49.
    EN-196-1 (2005): European Standard for Method of testing cement. Methods of testing cement—Part 1: Determination of strengthGoogle Scholar
  50. 50.
    EN 196-2: European Standard for Method of testing cement—Part 2: Chemical analysis of cement (2014)Google Scholar
  51. 51.
    Sánchez de Rojas, M.I., Marín, F., Rivera, J., Frías, M.: Morphology and properties in blended cements with ceramic wastes as a pozzolanic material. J. Am. Ceram. Soc. 89, 3701–3705 (2006).  https://doi.org/10.1111/j.1551-2916.2006.01279.x CrossRefGoogle Scholar
  52. 52.
    EN 450-1: European Standard for Fly ash for concrete. Part 1: Definition, specifications and conformity criteria (2013)Google Scholar
  53. 53.
    ASTM C642: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. (2006)Google Scholar
  54. 54.
    Frías, M., Savastano, H., Villar, E., Sánchez De Rojas, M.I., Santos, S.: Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem. Concr. Compos. 34, 1019–1023 (2012).  https://doi.org/10.1016/j.cemconcomp.2012.05.005 CrossRefGoogle Scholar
  55. 55.
    Taylor, H.F.W.: Cement chemistry. T. Telford (1997)Google Scholar
  56. 56.
    Calleja, J., Olmo, C.: Lo cal libre de los cementos y la expansión en autoclave. Mater. Constr. 21, 617–619 (1971)Google Scholar
  57. 57.
    ASTM C618-05: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. (2005)Google Scholar
  58. 58.
    Berra, M., Mangialardi, T., Paolini, A.E.: Reuse of woody biomass fly ash in cement-based materials. Constr. Build. Mater. 76, 286–296 (2015).  https://doi.org/10.1016/j.conbuildmat.2014.11.052 CrossRefGoogle Scholar
  59. 59.
    Nakanishi, E.Y., Frías, M., Martínez-Ramírez, S., Santos, S.F., Rodrigues, M.S., Rodríguez, O., Savastano, H.: Characterization and properties of elephant grass ashes as supplementary cementing material in pozzolan/Ca(OH)2 pastes. Constr. Build. Mater. 73, 391–398 (2014).  https://doi.org/10.1016/j.conbuildmat.2014.09.078 CrossRefGoogle Scholar
  60. 60.
    Frías, M., Villar-Cociña, E., Valencia-Morales, E.: Characterisation of sugar cane straw waste as pozzolanic material for construction: calcining temperature and kinetic parameters. Waste Manag. 27, 533–538 (2007).  https://doi.org/10.1016/j.wasman.2006.02.017 CrossRefGoogle Scholar
  61. 61.
    Villar Cociña, E., Savastano, H., Rodier, L., Lefran, M., Frías, M.: Pozzolanic characterization of cuban bamboo leaf ash: calcining temperature and kinetic parameters. Waste Biomass Valor. 9, 691–699 (2018).  https://doi.org/10.1007/s12649-016-9741-8 CrossRefGoogle Scholar
  62. 62.
    Rao, G.B., Susmitha, P.: Silicon uptake, transportation and accumulation in Rice. J. Pharmacogn. Phytochem. 6, 290–293 (2017). http://www.phytojournal.com/archives/2017/vol6issue6/PartE/6-5-385-299.pdf (accessed March 23, 2019)
  63. 63.
    Sindhu, R., Binod, P., Pandey, A., Madhavan, A., Alphonsa, J.A., Vivek, N., Gnansounou, E., Castro, E., Faraco, V.: Water hyacinth a potential source for value addition: an overview. Bioresour. Technol. 230, 152–162 (2017).  https://doi.org/10.1016/j.biortech.2017.01.035 CrossRefGoogle Scholar
  64. 64.
    Fu, F., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011).  https://doi.org/10.1016/J.JENVMAN.2010.11.011 CrossRefGoogle Scholar
  65. 65.
    Sing, J., Kalamdhad, A.S.: Bioavailability and leachability of heavy metals during water hyacinth composting. Chem. Speciat. Bioavailab. 25, 1–14 (2013).  https://doi.org/10.3184/095422913X13584520294651 CrossRefGoogle Scholar
  66. 66.
    Vázquez Moreno, T.: Contribución al estudio de los reacciones de hidratación del cemento portland por espectroscopia infrarroja. Mater. Constr. 26, 51–63 (2013).  https://doi.org/10.3989/mc.1976.v26.i163.1225 CrossRefGoogle Scholar
  67. 67.
    Yu, P., Kirkpatrick, R.J., Poe, B., McMillan, P.F., Cong, X.: Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82, 742–748 (1999).  https://doi.org/10.1111/j.1151-2916.1999.tb01826.x CrossRefGoogle Scholar
  68. 68.
    Skalny, J., Johansen, V., Ïhaulow, N., Palomo, A.: DEF: as a form of sulfate attack. Mater. Constr. 46, 242 (1996)CrossRefGoogle Scholar
  69. 69.
    Piqué, T., Vázquez, A.: Uso de espectroscopía infrarroja con transformada de fourier (FTIR) en el estudio de la hidratación del cemento. Concreto y Cem. Investig. y Desarro. 3, 62–71 (2012)Google Scholar
  70. 70.
    Diouri, A., Boukhari, A., Aride, J., Puertas, F.: Research of the lime rich portions of the CaO–SiO2–P2O5 system. Mater. Constr. 45, 3–13 (1995).  https://doi.org/10.3989/mc.1995.v45.i237.563 CrossRefGoogle Scholar
  71. 71.
    Adesanya, D.A., Raheem, A.A.: Development of corn cob ash blended cement. Constr. Build. Mater. 23, 347–352 (2009).  https://doi.org/10.1016/j.conbuildmat.2007.11.013 CrossRefGoogle Scholar
  72. 72.
    Adesanya, D.A., Raheem, A.A.: A study of the workability and compressive strength characteristics of corn cob ash blended cement concrete. Constr. Build. Mater. 23, 311–317 (2009).  https://doi.org/10.1016/j.conbuildmat.2007.12.004 CrossRefGoogle Scholar
  73. 73.
    Raheem, A.A., Olasunkanmi, B.S., Folorunso, C.S.: Saw dust ash as partial replacement for cement in concrete. Organ. Technol. Manag. Constr. An Int. J. 4, 474–480 (2012).  https://doi.org/10.5592/otmcj.2012.2.3 Google Scholar
  74. 74.
    Rajamma, R., Ball, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., Ferreira, V.M.: Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 172, 1049–1060 (2009).  https://doi.org/10.1016/j.jhazmat.2009.07.109 CrossRefGoogle Scholar
  75. 75.
    Bazzoni, A., Suhua, M., Wang, Q., Shen, X., Cantoni, M., Scrivener, K.L.: The effect of magnesium and zinc ions on the hydration kinetics of C3S. J. Am. Ceram. Soc. 97, 3684–3693 (2014).  https://doi.org/10.1111/jace.13156 CrossRefGoogle Scholar
  76. 76.
    Biczók, I.: Concrete corrosion and concrete protection. Chemical Publishing Company, New York (1967)Google Scholar
  77. 77.
    Ludwing, U.: Sobre el fraguado y eridurecimiento de cementos. Mater. Constr. 22, 57–70 (1972)CrossRefGoogle Scholar
  78. 78.
    Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., Siripanichgorn, A.: Use of waste ash from palm oil industry in concrete. Waste Manag. 27, 81–88 (2007).  https://doi.org/10.1016/j.wasman.2005.12.014 CrossRefGoogle Scholar
  79. 79.
    Yousuf, M., Mollah, A., Vempati, R.K., Lin, T.C., Cocke, D.L.: The interfacial chemistry of solidification stabilization of metals in cement and pozzolanic material systems. Waste Manag. 15, 137–148 (1995).  https://doi.org/10.1016/0956-053X(95)00013-P CrossRefGoogle Scholar
  80. 80.
    Gineys, N., Aouad, G., Damidot, D.: Managing trace elements in Portland cement—part I: interactions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. 32, 563–570 (2010).  https://doi.org/10.1016/j.cemconcomp.2010.06.002 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Construction and Technologies in ArchitectureUniversidad Politécnica de MadridMadridSpain
  2. 2.Eduardo Torroja Institute – CSIC-MadridSpain

Personalised recommendations