Effect of a Further Maturation Phase on the Chemical and Environmental Properties of a Bio-stabilised Waste from a Mechanical–Biological Treatment Plant

  • A. Lieto
  • D. ZingarettiEmail author
  • F. Lombardi
  • R. Gavasci
Original Paper


This work aimed at investigate the effects of a maturation treatment on the chemical and environmental properties of a bio-stabilised waste (BSW) produced from a Mechanical Biological Treatment (MBT) plant. Whilst several studies assessed the effects of maturation on compost properties, only a few works focused on BSW subjected to prolonged stabilisation processes. To this aim, the BSW produced from a MBT plant was subjected to a further pilot-scale prolonged curing, monitoring volatile solids and carbon content. Furthermore, a detailed characterization was performed on three BSW samples collected at different treatment duration, evaluating the biological stability, the total metal content, the metal speciation and their release in water. The obtained results confirmed that the adoption of a prolonged maturation process could improve the characteristics of the BSW produced in the MBT plant. After 28 days of treatment, the BSW presented a dynamic respiration index (DRI) value proper of a biologically unstable matrix. However, a higher stability degree was observed after at least 118 days (as shown by the DRI, the C/N ratio and the humification indices). The adopted treatment entailed also an improvement of the environmental behaviour of the material due to the decrease in the release of metal and organic carbon, as also shown by the reduction in the mobile fraction of metals observed in the metal speciation analysis. This study also showed that a preliminary assessment of the biological stability of a matrix could be already obtained analysing several parameter such as DOC, volatile solids and carbon content.


Bio-stabilised waste MBT plant Maturation Environmental behaviour Metal speciation 



  1. 1.
    EU Landfill Directive (1999/31/EC). Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal L 182, 16/07/1999 P. 0001-0019Google Scholar
  2. 2.
    Lombardi, F., Costa, G., Sirini, P.: Analysis of the role of the sanitary landfill in waste management strategies based upon a review of lab leaching tests and new tools to evaluate leachate production. Ambient. e Agua An Interdiscip. J. Appl. Sci. 12, 543 (2017). CrossRefGoogle Scholar
  3. 3.
    Soyez, K., Plickert, S.: Mechanical-biological pre-treatment of waste: state of the art and potentials of biotechnology. Acta Biotechnol. 22, 271–284 (2002).;2-I CrossRefGoogle Scholar
  4. 4.
    Adani, F., Tambone, F., Gotti, A.: Biostabilization of municipal solid waste. Waste Manag. 24, 775–783 (2004). CrossRefGoogle Scholar
  5. 5.
    MacLeod, I., Savage, A.L., Pahl, O., Baird, J.: Decline in microbial activity does not necessarily indicate an end to biodegradation in MSW-biowaste: a case study. Bioresour. Technol. 99, 8626–8630 (2008). CrossRefGoogle Scholar
  6. 6.
    Italian ministerial decree 27 settembre 2010. Definizione dei criteri di ammissibilita’ dei rifiuti in discarica, in sostituzione di quelli contenuti nel decreto del Ministro dell’ambiente e della tutela del territorio 3 agosto 2005. Gazzetta Ufficiale n° 281, 01/12/2010Google Scholar
  7. 7.
    Amlinger, F., Pollack, M., Favoino, E.: Heavy metals and organic compounds from wastes used as organic fertilisers. Final report for ENV. A. 2./ETU/2001/0024. Final Rep. ENV. A. (2004) 2./ETU/2001/0024. 1–244Google Scholar
  8. 8.
    Di Lonardo, M.C., Lombardi, F., Gavasci, R.: Quality evaluation and improvement of mechanically–biologically treated municipal solid waste in view of a possible recovery. Int. J. Environ. Sci. Technol. 12, 3243–3254 (2015). CrossRefGoogle Scholar
  9. 9.
    Di Lonardo, M.C., Binner, E., Lombardi, F.: Influence assessment of a lab-scale ripening process on the quality of mechanically-biologically treated MSW for possible recovery. Waste Manag. 43, 50–60 (2015). CrossRefGoogle Scholar
  10. 10.
    Di Lonardo, M.C., Franzese, M., Costa, G., Gavasci, R., Lombardi, F.: The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: comparison and implications. Waste Manag. 47, 195–205 (2016). CrossRefGoogle Scholar
  11. 11.
    Dimambro, M.E., Lillywhite, R.D., Rahn, C.R.: The physical, chemical and microbial characteristics of biodegradable municipal waste derived composts. Compost Sci. Util. 15, 243–252 (2007). CrossRefGoogle Scholar
  12. 12.
    Tessier, A., Campbell, P.G.C., Bisson, M.: Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979). CrossRefGoogle Scholar
  13. 13.
    van der Sloot, H.A, Comans, R.N.J., Meeussen, J.C.L.: Leaching methods for soil, sludge and treated biowaste. ECN Environ. Risk Assess 73 (2003)Google Scholar
  14. 14.
    UNI EN 10802: Wastes—Manual Sampling and Preparation of Sample and Analysis of Eluates (in Italian). UNI EN 10802, Italian National Agency for Standardization (UNI), Milan, Italy (2013)Google Scholar
  15. 15.
    UNI/TS 11184: Waste and Refuse Derived Fuel—Determination of Biological Stability by Dynamic Respirometric Index (in Italian). UNI/TS 11184. Italian National Agency for Standardization (UNI), Milan, Italy (2016)Google Scholar
  16. 16.
    UNI EN 13137: Characterization of Waste—Determination of Total Organic Carbon (TOC) in Waste Sludges and Sediments (in Italian). UNI EN 13137, Italian National Agency for Standardization (UNI), Milan, Italy (2002)Google Scholar
  17. 17.
    Bernal, M.P., Paredes, C., Sánchez-Monedero, M.A., Cegarra, J.: Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 63, 91–99 (1998). CrossRefGoogle Scholar
  18. 18.
    Bustamante, M.A., Alburquerque, J.A., Restrepo, A.P., de la Fuente, C., Paredes, C., Moral, R., Bernal, M.P.: Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenergy 43, 26–35 (2012). CrossRefGoogle Scholar
  19. 19.
    UNI EN 12457:Characterization of waste—Leaching—Compliance test for leaching of granular waste materials and sludges. Part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm(without or with size reduction). UNI EN 12457-2, Italian National Agency for Standardization (UNI), Milan, Italy (2004)Google Scholar
  20. 20.
    Fang, M., Wong, J.W.C., Ma, K.K., Wong, M.H.: Co-composting of sewage sludge and coal fly ash: nutrient transformations. Bioresour. Technol. 67, 19–24 (1999). CrossRefGoogle Scholar
  21. 21.
    Mathur, S.P., Owen, G., Dinel, H., Schnitzer, M.: Determination of compost biomaturity. I. Literature review. Biol. Agric. Hortic. 10, 65–85 (1993). CrossRefGoogle Scholar
  22. 22.
    Komilis, D.P., Tziouvaras, I.S.: A statistical analysis to assess the maturity and stability of six composts. Waste Manag. 29, 1504–1513 (2009). CrossRefGoogle Scholar
  23. 23.
    European Community: Working Document: Biological Treatment of Biowaste 2nd Draft. DG ENV A2/LM/biowaste/2nd Draft (2001)Google Scholar
  24. 24.
    Hue, N.V., Liu, J.: Predicting compost stability. Compost Sci. Util. 3, 8–15 (1995). CrossRefGoogle Scholar
  25. 25.
    Said-Pullicino, D., Erriquens, F.G., Gigliotti, G.: Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour. Technol. 98, 1822–1831 (2007). CrossRefGoogle Scholar
  26. 26.
    Barrena, R., D’Imporzano, G., Ponsa, S., Gea, T., Artola, A., Vazquez, F., Sanchez, A., Adani, F.: In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical–biological treated waste. J. Hazard. Mater. 162, 1065–1072 (2009)CrossRefGoogle Scholar
  27. 27.
    Bernal, M.P., Alburquerque, J.A., Moral, R.: Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100, 5444–5453 (2009). CrossRefGoogle Scholar
  28. 28.
    Bhattacharyya, P., Chakrabarti, K., Chakraborty, A.: Effect of msw compost on microbiological and biochemical soil quality indicators. Compost Sci. Util. 11, 220–227 (2003). CrossRefGoogle Scholar
  29. 29.
    Crecchio, C., Curci, M., Pizzigallo, M.D.R., Ricciuti, P., Ruggiero, P.: Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biol. Biochem. 36, 1595–1605 (2004). CrossRefGoogle Scholar
  30. 30.
    García-Gil, J.C., Plaza, C., Soler-Rovira, P., Polo, A.: Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32, 1907–1913 (2000). CrossRefGoogle Scholar
  31. 31.
    Iglesias-Jimenez, E., Alvarez, C.E.: Apparent availability of nitrogen in composted municipal refuse. Biol. Fertil. Soils 16, 313–318 (1993). CrossRefGoogle Scholar
  32. 32.
    Maftoun, M., Moshiri, F., Karimian, N., Ronaghi, A.M.: Effects of two organic wastes in combination with phosphorus on growth and chemical composition of spinach and soil properties. J. Plant Nutr. 27, 1635–1651 (2004). CrossRefGoogle Scholar
  33. 33.
    Montemurro, F., Maiorana, M., Convertini, G., Ferri, D.: Compost organic amendments in fodder crops: effects on yield, nitrogen utilization and soil characteristics. Compost Sci. Util. 14, 114–123 (2006). CrossRefGoogle Scholar
  34. 34.
    Pascual, J.A., García, C., Hernandez, T.: Lasting microbiological and biochemical effects of the addition of municipal solid waste to an arid soil. Biol. Fertil. Soils 30, 1–6 (1999). CrossRefGoogle Scholar
  35. 35.
    van Praagh, M., Heerenklage, J., Smidt, E., Modin, H., Stegmann, R., Persson, K.M.: Potential emissions from two mechanically-biologically pretreated (MBT) wastes. Waste Manag. 29, 859–868 (2009). CrossRefGoogle Scholar
  36. 36.
    Walter, I., Martínez, F., Cuevas, G.: Plant and soil responses to the application of composted MSW in a degraded, semiarid shrubland in central spain. Compost Sci. Util. 14, 147–154 (2006). CrossRefGoogle Scholar
  37. 37.
    Wolkowski, R.P.: Nitrogen management considerations for landspreading municipal solid waste compost. J. Environ. Qual. 32, 1844–1850 (2003). CrossRefGoogle Scholar
  38. 38.
    Amir, S., Hafidi, M., Merlina, G., Revel, J.C.: Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere 59, 801–810 (2005). CrossRefGoogle Scholar
  39. 39.
    Italian ministerial decree 24 giugno 2015. Modifica del decreto 27 settembre 2010, relativo alla definizione dei criteri di ammissibilita’ dei rifiuti in discarica. Gazzetta Ufficiale n° 211, 11/09/2015Google Scholar
  40. 40.
    Farrell, M., Jones, D.L.: Heavy metal contamination of a mixed waste compost: metal speciation and fate. Bioresour. Technol. 100, 4423–4432 (2009). CrossRefGoogle Scholar
  41. 41.
    Petruzzelli, G., Szymura, I., Lubrano, L., Pezzarossa, B.: Chemical speciation of heavy-metals in different size fractions of compost from solid urban wastes. Environ. Technol. Lett. 10, 521–526 (1989)CrossRefGoogle Scholar
  42. 42.
    Singh, J., Kalamdhad, A.: Bioavailability and leachability of heavy metals during composting—a review. Int. Res. J. Environ. Sci. 2, 59–64 (2013)Google Scholar
  43. 43.
    Tandy, S., Healey, J.R., Nason, M.A., Williamson, J.C., Jones, D.L.: Heavy metal fractionation during the co-composting of biosolids, deinking paper fibre and green waste. Bioresour. Technol. 100, 4220–4226 (2009). CrossRefGoogle Scholar
  44. 44.
    Pantini, S., Verginelli, I., Lombardi, F.: Analysis and modeling of metals release from MBT wastes through batch and up-flow column tests. Waste Manag. 38, 22–32 (2015). CrossRefGoogle Scholar
  45. 45.
    Liu, Y., Ma, L., Li, Y., Zheng, L.: Evolution of heavy metal speciation during the aerobic composting process of sewage sludge. Chemosphere 67(5), 1025–1032 (2007)CrossRefGoogle Scholar
  46. 46.
    Stevenson, F.J.: Humus chemistry: genesis, composition, reactions. Wiley, New York (1994)Google Scholar
  47. 47.
    Giannopoulou, K., Zeri, C., Nektarios, P., Sakellari, A., Nydrioti, E., Scoullos, M.: Chemical evaluation of compost produced at a large Greek mechanical biological treatment plant: metal availability and phytotoxicity. Compost Sci. Util. 23, 248–266 (2015). CrossRefGoogle Scholar
  48. 48.
    Paradelo, R., Villada, A., Devesa-Rey, R., Moldes, A.B., Domínguez, M., Patiño, J., Barral, M.T.: Distribution and availability of trace elements in municipal solid waste composts. J. Environ. Monit. 13, 201–211 (2011). CrossRefGoogle Scholar
  49. 49.
    European Commission, 2014. COM398, Towards a Circular Economy: A ZeroWaste Programme for Europe (2014)Google Scholar
  50. 50.
    Montoneri, E., Boffa, V., Savarino, P., Perrone, D.G., Musso, G., Mendichi, R., Chierotti, M.R., Gobetto, R.: Biosurfactants from urban green waste. Chemsuschem 2, 239–247 (2009). CrossRefGoogle Scholar
  51. 51.
    Montoneri, E., Bottigliengo, S., Boffa, V., Savarino, P., Guizzetti, T., Perrone, D.G., Mendichi, R.: Biosurfactants from urban wastes as auxiliaries for textile dyeing. Ind. Eng. Chem. Res. 48, 3738–3748 (2009). CrossRefGoogle Scholar
  52. 52.
    Zingaretti, D., Lombardi, F., Baciocchi, R.: Soluble organic substances extracted from compost as amendments for Fenton-like oxidation of contaminated sites. Sci. Total Environ. 619–620, 1366–1374 (2018). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science EngineeringUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations