Influence of CO2 Concentration and Inorganic Species on the Gasification of Lignocellulosic Biomass Derived Chars

  • Simona BenniciEmail author
  • Mejdi Jeguirim
  • Lionel Limousy
  • Khouloud Haddad
  • Cyril Vaulot
  • Laure Michelin
  • Ludovic Josien
  • Antonis A. Zorpas
Original Paper


The recent bio-based economy directions towards the renewable energy development result in an overwhelming compulsion to identify new environmental friendly processes for biomass conversion. Combustion, gasification, and pyrolysis have been identified as promising thermo-chemical conversion techniques for energy and biofuels production. However, many drawbacks need to be solved for developing their applications at large scale. Among the various problematics, the influence of inorganics on char gasification reactivity remains an open issue. Hence, the effect of alkaline and alkali earth metal (potassium and calcium) under different CO2 concentrations (20–100%) have been here investigated by thermal gravimetric analysis. Surprisingly, the presence of calcium did not improve the reactivity as expected, but a decrease in the gasification kinetics was observed, when compared to the gasification of the char obtained from washed biomass containing a lower amount of calcium species. On the other hand, K-species clearly act as activators, in particular at high char conversion ratios. The char gasification rate was higher at high CO2 concentration for all samples, and the effect of CO2 concentration was maximized for the K-enriched char.

Graphical Abstract


Gasification Char Inorganics Biomass conversion 



The authors would like to thank the Carnot Institute MICA for supporting a part of this study in the frame of the Carbovit project. Khouloud Haddad thanks the World Bank for its financial support through the Robert S. McNamara Fellowships Program.The physico-chemical characterizations were performed on the technical platforms of IS2M.


  1. 1.
    Tamošiūnas, A., Chouchène, A., Valatkevičius, P., Gimžauskaitė, D., Aikas, M., Uscila, R., Ghorbel, M., Jeguirim, M.: The potential of thermal plasma gasification of olive pomace charcoal. Energies 10, 710–723 (2017)CrossRefGoogle Scholar
  2. 2.
    Neri, E., Cespi, D., Setti, L., Gombi, E., Bernardi, E., Vassura, I., Passarini, F.: Biomass residues to renewable energy: a life cycle perspective applied at a local scale. Energies 9, 922–936 (2016)CrossRefGoogle Scholar
  3. 3.
    Squalli, J.: Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data. Energy 127, 479–488 (2017)CrossRefGoogle Scholar
  4. 4.
    Kraiem, N., Lajili, M., Limousy, L., Said, R., Jeguirim, M.: Energy recovery from tunisian agri-food wastes: evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy 107, 409–418 (2016)CrossRefGoogle Scholar
  5. 5.
    Guizani, C., Haddad, K., Jeguirim, M., Colin, B., Limousy, L.: Combustion characteristics and kinetics of torrefied olive pomace. Energy 107, 453–463 (2016)CrossRefGoogle Scholar
  6. 6.
    Herman, A.P., Yusup, S., Shahbaz, M.: Utilisation of bottom ash as catalyst in biomass steam gasification for hydrogen and syngas production. Chem. Eng. Trans. 52, 1249–1254 (2016)Google Scholar
  7. 7.
    Kirubakaran, V., Sivaramakrishnan, V., Nalinic, R., Sekar, T., Premalatha, M., Subramanian, P.: A review on gasification of biomass. Renew. Sustain. Energy Rev. 13, 179–186 (2009)CrossRefGoogle Scholar
  8. 8.
    Wang, L., Hovd, B., Bui, H.-H., Valderhaug, A., Videm, B., Birkeland, R.G., Skreiberg, O., Tran, K.-Q.: CO2 reactivity assessment of woody biomass biocarbons for metallurgical purposes. Chem. Eng. Trans. 50, 55–60 (2016)Google Scholar
  9. 9.
    Ruoppolo, G., Miccio, F., Brachi, P., Picarelli, A., Chirone, R.: Fluidized bed gasification of biomass and biomass/coal pellets in oxygen and steam atmosphere. Chem. Eng. Trans. 32, 595–600 (2013)Google Scholar
  10. 10.
    Rapagnà, S., Spinelli, G.: Air-steam biomass gasification in a fluidised bed reactor in presence of ceramic filters. Chem. Eng. Trans. 43, 397–402 (2015)Google Scholar
  11. 11.
    Kramb, J., Gomez-Barea, A., DeMartini, N., Romar, H., Doddapaneni, T.R.K.C., Konttinen, J.: The effects of calcium and potassium on CO2 gasification of birch wood in a fluidized bed. Fuel 196, 398–407 (2017)CrossRefGoogle Scholar
  12. 12.
    D’Orazio, A., Rapagnà, S., Foscolo, P.U., Gallucci, K., Nacken, M., Heidenreich, S., Di Carlo, A., Dell’Era, A.: Gas conditioning in H2 rich syngas production by biomass steam gasification: experimental comparison between three innovative ceramic filter candles. Int. J. Hydrogen Energy 40, 7282–7290 (2015)CrossRefGoogle Scholar
  13. 13.
    Hognon, C., Dupont, C., Grateau, M., Delrue, F.: Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements. Biores. Technol. 164, 347–353 (2014)CrossRefGoogle Scholar
  14. 14.
    Guizani, C., Jeguirim, M., Gadiou, R., Escudero Sanz, F.J., Salvador, S.: Biomass char gasification by H2O, CO2 and their mixture: evolution of chemical, textural and structural properties of the chars. Energy 112, 133–145 (2016)CrossRefGoogle Scholar
  15. 15.
    Dahou, T., Defoort, F., Thiéry, S., Grateau, M., Campargue, M., Bennici, S., Jeguirim, M., Dupont, C.: The influence of char preparation and biomass type on char steam gasification kinetics. Energies 11, 2126–2141 (2018)CrossRefGoogle Scholar
  16. 16.
    Bouraoui, Z., Dupont, C., Jeguirim, M., Limousy, L., Gadiou, R.: CO2 gasification of woody biomass chars: the influence of K and Si on char reactivity. C. R. Chim. 19, 457–465 (2016)CrossRefGoogle Scholar
  17. 17.
    Bouraoui, Z., Jeguirim, M., Guizani, C., Limousy, L., Dupont, C., Gadiou, R.: Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity. Energy 88, 703–710 (2015)CrossRefGoogle Scholar
  18. 18.
    Dupont, C., Boissonnet, G., Seiler, J.-M., Gauthier, P., Schweich, D.: Study about the kinetic processes of biomass steam gasification. Fuel 86, 32–40 (2007)CrossRefGoogle Scholar
  19. 19.
    Dupont, C., Nocquet, T., Da Costa, J.A., Verne-Tournon, C.: Kinetic modelling of steam gasification of various woody biomass chars: influence of inorganic elements. Biores. Technol. 102, 9743–9748 (2011)CrossRefGoogle Scholar
  20. 20.
    Di Blasi, C.: Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 35, 121–140 (2009)CrossRefGoogle Scholar
  21. 21.
    Haddad, K., Jeguirim, M., Jellali, S., Guizani, C., Delmotte, L., Bennici, S., Limousy, L.: Combined NMR structural characterization and thermogravimetric analyses for the assessment of the AAEM effect during lignocellulosic biomass pyrolysis. Energy 134, 10–23 (2017)CrossRefGoogle Scholar
  22. 22.
    Jiang, L., Hu, S., Sun, L.-S., Su, S., Xu, K., He, L.-M., Xiang, J.: Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Biores. Technol. 146, 254–260 (2013)CrossRefGoogle Scholar
  23. 23.
    Mourant, D., Wang, Z., He, M., Shan Wang, X., Garcia-Perez, M., Ling, K., Li, C.-Z.: Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel 90, 2915–2922 (2011)CrossRefGoogle Scholar
  24. 24.
    Bozic, D., Gorgievski, M., Stankovic, V., Strbac, N., Serbula, S., Petrovic, N.: Adsorption of heavy metals by beech sawdust: kinetics, mechanism and equilibrium of the process. Ecol. Eng. 58, 202–206 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Université de Haute-alsace, CNRS, IS2M UMR 7361MulhouseFrance
  2. 2.Université de StrasbourgStrasbourgFrance
  3. 3.Faculty of Pure and Applied Sciences, Environmental Conservation and Management, Lab of Chemical Engineering and Engineering SustainabilityCyprus Open UniversityNicosiaCyprus

Personalised recommendations