A Strategy for Simultaneous Xylose Utilization and Enhancement of Cellulase Enzyme Production by Trichoderma reesei Cultivated on Liquid Hydrolysate Followed by Induction with Feeding of Solid Sugarcane Bagasse

  • Premeshworii D. Maibam
  • Soumen K. MaitiEmail author
Original Paper


Production of cellulase enzyme by Trichoderma reesei using cheap lignocellulosic material sugarcane bagasse was studied. Enzyme production from lignocellulosic biomass required pretreatment to decrease the cellulose crystallinity where inhibitors are released in hydrolysate. Strategies for solid bagasse feeding and pH shifting during fermentation have been developed for cellulase production enhancement by T. reesei NCIM 1186. To improve the cellulase production along with xylose utilization from the hydrolysate various feeding approach of pretreated solid bagasse in liquid hydrolysate grown culture has been investigated. This T. reesei has shown the capability of complete consumption of acetic acid, furfural, 5-hydroxymethyl, furfural and formic acid along with enzyme production. The maximum cellulase production of 1.5 U/ml CMCase and 1.01 U/ml FPase was obtained using a solid bagasse strategy developed here where T. reesei was grown in sugar rich hydrolysate followed by early feeding of pretreated solid bagasse along with pH shifting strategy in a stirred tank bioreactor. This production was almost fivefolds increment of both FPase and CMCase compared to culture grown in whole slurry mixture.


Cellulase Lignocellulose pH shifting Pretreated solid feeding Sugar rich hydrolysate Detoxification 



Authors would like to thanks to Indian Institute of Technology Guwahati for providing the facilities to carry out the experiments.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ellila, S., Fonseca, L., Uchima, C., Cota, J., Goldman, G.H., Saloheimo, M., Sacon, V., Siika-aho, M.: Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels 10(1), 30 (2017)CrossRefGoogle Scholar
  2. 2.
    Brethauer, S., Studer, M.H.: Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy. Environ. Sci. 7(4), 1446–1453 (2014)CrossRefGoogle Scholar
  3. 3.
    Sukumaran, R.K., Singhania, R.R., Mathew, G.M., Pandey, A.: Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34(2), 421–424 (2009)CrossRefGoogle Scholar
  4. 4.
    Pere, J., Puolakka, A., Nousiainen, P., Buchert, J.: Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J. Biotechnol. 89(2–3), 247–255 (2001)CrossRefGoogle Scholar
  5. 5.
    Dienes, D., Egyhazi, A., Reczey, K.: Treatment of recycled fiber with Trichoderma cellulases. Ind. Crop Prod. 20(1), 11–21 (2004)CrossRefGoogle Scholar
  6. 6.
    Galante, Y.M., DeConti, A., Monteverdi, R.: Application of Trichoderma enzymes in food and feed industries. In: Harman, G.F., Kubicek, C.P. (eds.) Trichoderma and Gliocladium—enzymes, vol. 2, pp. 327–342. Taylor & Francis, London (1998)Google Scholar
  7. 7.
    Mansfield, S.D., Wong, K.K.Y., DeJong, E., Saddler, J.N.: Modification of Douglas-fir mechanical and kraft pulps by enzyme treatment. Tappi J. 79(8), 125–132 (1996)Google Scholar
  8. 8.
    Harman, G.E., Björkman, T.: Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Kubicek, C.P., Harman, G.E. (eds.) Trichoderma and Gliocladium, vol. 2, pp. 229–265. Taylor and Francis, London (1998)Google Scholar
  9. 9.
    Khan, M.M.H., Ali, S., Fakhru’L-Razi, A., Alam, M.Z.: Use of fungi for the bioconversion of rice straw into cellulase enzyme. J. Environ. Sci. Health B 42(4), 381–386 (2007)CrossRefGoogle Scholar
  10. 10.
    Kogo, T., Yoshida, Y., Koganei, K., Matsumoto, H., Watanabe, T., Ogihara, J., Kasumi, T.: Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour. Technol. 233, 67–73 (2017)CrossRefGoogle Scholar
  11. 11.
    Rocha, V.A.L., Maeda, R.N., Anna, L.M.M.S., Pereira, N.: Sugarcane bagasse as feedstock for cellulase production by Trichoderma harzianum in optimized culture medium. Electron. J. Biotechnol. 16(5), 1 (2013)CrossRefGoogle Scholar
  12. 12.
    Alriksson, B., Rose, S.H., van Zyl, W.H., Sjode, A., Nilvebrant, N.O., Jonsson, L.J.: Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Appl. Environ. Microb. 75(8), 2366–2374 (2009)CrossRefGoogle Scholar
  13. 13.
    Delabona, P.D., Lima, D.J., Robl, D., Rabelo, S.C., Farinas, C.S., Pradella, J.G.D.: Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J. Ind. Microbiol. Biotechnol. 43(5), 617–626 (2016)CrossRefGoogle Scholar
  14. 14.
    Romero, M.D., Aguado, J., Gonzalez, L., Ladero, M.: Cellulase production by Neurospora crassa on wheat straw. Enzyme Microb. Technol. 25(3–5), 244–250 (1999)CrossRefGoogle Scholar
  15. 15.
    Xu, C.Y., Ma, F.Y., Zhang, X.Y.: Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. J. Biosci. Bioeng. 108(5), 372–375 (2009)CrossRefGoogle Scholar
  16. 16.
    Sun, H.Y., Li, J.H., Zhao, P.J., Peng, M.: Banana peel: a novel substrate for cellulase production under solid-state fermentation. Afr. J. Biotechnol. 10(77), 17887–17890 (2011)Google Scholar
  17. 17.
    Kuzmanova, S., Vandeska, E., Dimitrovski, A.: Production of mycelial protein and cellulolytic enzymes from food wastes. J. Ind. Microbiol. 7(4), 257–261 (1991)CrossRefGoogle Scholar
  18. 18.
    Zha, Y., Muilwijk, B., Coulier, L., Punt, P.J.: Inhibitory compounds in lignocellulosic biomass hydrolysates during hydrolysate fermentation processes. J. Bioprocess. Biotech. 2, 112–123 (2012)CrossRefGoogle Scholar
  19. 19.
    Pradoa, C.A., Souzaa, O., Sellina, N., Marangonib, C.: Comparison between single and multi-effect evaporators for sugar concentration in ethanol production. J. High Energy Phys. 43, 541–546 (2015)Google Scholar
  20. 20.
    Dehkhoda, A., Brandberg, T., Taherzadeh, M.J.: Comparison of vacuum and high pressure evaporated wood hydrolyzate for ethanol production by repeated fed-batch using flocculating Saccharomyces cerevisiae. Bioresources 4(1), 309–320 (2009)Google Scholar
  21. 21.
    Liu, S.J., Amidon, T.E., Wood, C.D.: Membrane filtration: concentration and purification of hydrolyzates from biomass. J. Biobased Mater. Bioenergy 2(2), 121–134 (2008)CrossRefGoogle Scholar
  22. 22.
    Malmali, M., Stickel, J.J., Wickramasinghe, S.R.: Sugar concentration and detoxification of clarified biomass hydrolysate by nanofiltration. Sep. Purif. Technol. 132, 655–665 (2014)CrossRefGoogle Scholar
  23. 23.
    Mussatto, S.I., Santos, J.C., Roberto, I.C.: Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J. Chem. Technol. Biotechnol. 79(6), 590–596 (2004)CrossRefGoogle Scholar
  24. 24.
    Maiti, S.K., Thuyavan, Y.L., Singh, S., Oberoi, H.S., Agarwal, G.P.: Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes. Bioresour. Technol. 114, 419–427 (2012)CrossRefGoogle Scholar
  25. 25.
    Weng, Y.H., Wei, H.J., Tsai, T.Y., Lin, T.H., Wei, T.Y., Guo, G.L., Huang, C.P.: Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration. Bioresour. Technol. 101(13), 4889–4894 (2010)CrossRefGoogle Scholar
  26. 26.
    Greer, D.R., Basso, T.P., Ibanez, A.B., Bauer, S., Skerker, J.M., Ozcam, A.E., Leon, D., Shin, C., Arkin, A.P., Balsara, N.P.: Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes. Green Chem. 16(9), 4206–4213 (2014)CrossRefGoogle Scholar
  27. 27.
    Nichols, N.N., Sharma, L.N., Mowery, R.A., Chambliss, C.K., van Walsum, G.P., Dien, B.S., Iten, L.B.: Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb. Technol. 42(7), 624–630 (2008)CrossRefGoogle Scholar
  28. 28.
    Palmqvist, E., HahnHagerdal, B., Szengyel, Z., Zacchi, G., Reczey, K.: Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb. Technol. 20(4), 286–293 (1997)CrossRefGoogle Scholar
  29. 29.
    Hou-Rui, Z., Xiang-Xiang, Q., Silva, S.S., Sarrouh, B.F., Ai-Hua, C., Yu-Heng, Z., Ke, J., Qiu, X.: Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl. Biochem. Biotech. 152(2), 199–212 (2009)CrossRefGoogle Scholar
  30. 30.
    Larsson, S., Reimann, A., Nilvebrant, N.O., Jonsson, L.J.: Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotech. 77, 91–103 (1999)CrossRefGoogle Scholar
  31. 31.
    Griffin, H.L., Sloneker, J.H., Inglett, G.E.: Cellulase production by Trichoderma viride on feedlot waste. Appl. Microbiol. 27(6), 1061–1066 (1974)Google Scholar
  32. 32.
    Kansoh, A.L., Essam, S.A., Zeinat, A.N.: Biodegradation and utilization of bagasse with Trichoderma reesie. Polym. Degrad. Stabil. 63(2), 273–278 (1999)CrossRefGoogle Scholar
  33. 33.
    Li, X.H., Yang, H.J., Roy, B., Park, E.Y., Jiang, L.J., Wang, D., Miao, Y.G.: Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol. Res. 165(3), 190–198 (2010)CrossRefGoogle Scholar
  34. 34.
    Prasetyo, J., Sumita, S., Okuda, N., Park, E.Y.: Response of cellulase activity in pH-controlled cultures of the filamentous fungus acremonium cellulolyticus. Appl. Biochem. Biotech. 162(1), 52–61 (2010)CrossRefGoogle Scholar
  35. 35.
    Mandels, M., Reese, E.T.: Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 73(2), 269–278 (1957)Google Scholar
  36. 36.
    Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)CrossRefGoogle Scholar
  37. 37.
    Ahamed, A., Vermette, P.: Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Bioresour. Technol. 100(23), 5979–5987 (2009)CrossRefGoogle Scholar
  38. 38.
    Tangnu, S.K., Blanch, H.W., Wilke, C.R.: Enhanced production of cellulase, hemicellulase, and beta-glucosidase by Trichoderma-reesei (Rut C-30). Biotechnol. Bioeng. 23(8), 1837–1849 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations