Advertisement

Techno-Economic and Environmental Analysis of Biogas Production from Plantain Pseudostem Waste in Colombia

  • Daniela Parra-Ramírez
  • Juan Camilo Solarte-Toro
  • Carlos Ariel Cardona-AlzateEmail author
Original Paper
  • 10 Downloads

Abstract

Currently, the use of energy from fossil fuels is generating serious environmental issues. On the other hand, a large amount of agro-industrial residues is produced without any specific use in Colombia. Nevertheless, potential applications related to the biomass upgrading into energy vectors has been encouraged in this country considering the biogas as a potential biofuel derived from agricultural wastes. Therefore, this work evaluates the simulation of the biogas production process from plantain pseudostem. For this, three scenarios have been proposed and simulated using the Aspen Plus Software. The first scenario only includes the plantain pseudostem anaerobic degradation without a pretreatment and biogas purification stages. The second scenario involves the acid pretreatment of the raw material and the biogas production using as substrate the mix between a xylose rich liquor and the acid pretreated solid. Instead, the third scenario includes an acid pretreatment stage and a biogas purification technology. The results show that the plantain pseudostem is a promising raw material to produce biogas. The application of the dilute acid pretreatment to the raw material allows increasing the methane yields. Moreover, the implementation of both pretreatment and methane concentration stages results in higher production costs. Nevertheless, the third scenario shown better performances since it has lower content of carbon dioxide. As conclusion, the biogas produced from renewable sources has a great potential to be used as biofuel and energy source for electricity generation in rural areas of Colombia.

Keywords

Agricultural waste Biogas Bioenergy Plantain pseudostem Process simulation 

Notes

References

  1. 1.
    Moncada, J., Aristizábal, V., Cardona, C.A.: Design strategies for sustainable biorefineries. Biochem. Eng. J. 116, 122–134 (2016)CrossRefGoogle Scholar
  2. 2.
    Seadi, T.A., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Janssen, R.: Biogas Handbook. (2008)Google Scholar
  3. 3.
    Cardona Alzate, C.A., Solarte-Toro, J.C., Peña, ÁG.: Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catal. Today. 302, 61–72 (2018).  https://doi.org/10.1016/j.cattod.2017.09.034 CrossRefGoogle Scholar
  4. 4.
    Renewable energy policy network for the 21st century (REN21).: Renewables 2017 global status report. Paris Renew. energy policy Netw. 21st Century. 325 (2018)Google Scholar
  5. 5.
    Tiwari, G., Mishra, R.: Advanced Renewable Energy Sources. Royal Society of Chemestry, London (2012)Google Scholar
  6. 6.
    Koizumi, T.: Biofuels and Food Security: Biofuel Impact on Food Security in Brazil, Asia and Major Producing Countries. Springer, New York (2014)CrossRefGoogle Scholar
  7. 7.
    Alonso, D.M., Bond, J.Q., Dumesic, J.A.: Catalytic conversion of biomass to biofuels. Green Chem. 12, 1493–1513 (2010).  https://doi.org/10.1039/c004654j CrossRefGoogle Scholar
  8. 8.
    Jouzani, G., Taherzadeh, M.: Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res. J. 5, 152–195 (2015).  https://doi.org/10.18331/BRJ2015.2.1.4 CrossRefGoogle Scholar
  9. 9.
    Claassen, P.A., van Lier, J.B., Contreras, A.L., van Niel, E.M., Sijtsma, L., Stams, A.J., de Vries, S.S., Weusthuis, R.A.: Utilisation of biomass for the supply of energy carriers. Appl. Microbiol. Biotechnol. 52, 741–755 (1999).  https://doi.org/10.1007/s002530051586 CrossRefGoogle Scholar
  10. 10.
    Demirbas, A.: Biofuels securing the planet’s future energy needs. Energy Convers. Manag. 50, 2239–2249 (2009).  https://doi.org/10.1016/j.enconman.2009.05.010 CrossRefGoogle Scholar
  11. 11.
    Mohsin, R., Majid, Z.A., Shihnan, A.H., Nasri, N.S., Sharer, Z.: Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine. Energy Convers. Manag. 88, 821–828 (2014).  https://doi.org/10.1016/j.enconman.2014.09.027 CrossRefGoogle Scholar
  12. 12.
    Raposo, F., De La Rubia, M.A., Fernandez-Cegr, V., Borja, R.: Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 16, 861–877 (2012).  https://doi.org/10.1016/j.rser.2011.09.008 CrossRefGoogle Scholar
  13. 13.
    Goyal, H.B., Seal, D., Saxena, R.C.: Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sustain. Energy Rev. 12, 504–517 (2008).  https://doi.org/10.1016/j.rser.2006.07.014 CrossRefGoogle Scholar
  14. 14.
    Deremince, B., Königsberger, S.: Statistical Report of the European Biogas Association 2017. (2017)Google Scholar
  15. 15.
    EPA: Managing Manure with Biogas Recovery Systems—Improved Performance at Competitive Costs, The AgSTAR Program. (2002)Google Scholar
  16. 16.
    Surendra, K.C., Takara, D., Hashimoto, A.G., Khanal, S.K.: Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew. Sustain. Energy Rev. 31, 846–859 (2014).  https://doi.org/10.1016/j.rser.2013.12.015 CrossRefGoogle Scholar
  17. 17.
    Beil, M., Beyrich, W.: Biogas upgrading to biomethane. In: The Biogas Handbook. pp. 342–377 (2013)Google Scholar
  18. 18.
    Deublein, D., Steinhauser, A.: Biogas from Waste and Renewable Resources: An Introduction. Wiley, New York (2010)CrossRefGoogle Scholar
  19. 19.
    Solarte-Toro, J.C., Chacón-Pérez, Y., Cardona-Alzate, C.A.: Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron. J. Biotechnol. 33, 52–62 (2018).  https://doi.org/10.1016/j.ejbt.2018.03.005 CrossRefGoogle Scholar
  20. 20.
    Kratzeisen, M., Starcevic, N., Martinov, M., Maurer, C., Müller, J.: Applicability of biogas digestate as solid fuel. Fuel. 89, 2544–2548 (2010).  https://doi.org/10.1016/j.fuel.2010.02.008 CrossRefGoogle Scholar
  21. 21.
    Ehmann, A., Bach, I.-M., Bilbao, J., Lewandowski, I., Müller, T.: Phosphates recycled from semi-liquid manure and digestate are suitable alternative fertilizers for ornamentals. Sci. Hortic. (Amsterdam). 243, 440–450 (2019).  https://doi.org/10.1016/J.SCIENTA.2018.08.052 CrossRefGoogle Scholar
  22. 22.
    Taherdanak, M., Zilouei, H., Karimi, K.: The influence of dilute sulfuric acid pretreatment on biogas production form wheat plant. Int. J. Green Energy. 13, 1129–1134 (2016).  https://doi.org/10.1080/15435075.2016.1175356 CrossRefGoogle Scholar
  23. 23.
    Sarto, S., Hildayati, R., Syaichurrozi, I.: Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics. Renew. Energy. 132, 335–350 (2019).  https://doi.org/10.1016/J.RENENE.2018.07.121 CrossRefGoogle Scholar
  24. 24.
    Hoon-Jung, Y., Heon-Kim, K.: Acidic pretreatment. In: Pretreatment of Biomass: Processes and Technologies. pp. 27–50 (2015)Google Scholar
  25. 25.
    Ferreira, L.C., Donoso-Bravo, A., Nilsen, P.J., Fdz-Polanco, F., Perez-Elvira, S.I.: Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresour. Technol. 143, 251–257 (2013).  https://doi.org/10.1016/j.biortech.2013.05.065 CrossRefGoogle Scholar
  26. 26.
    Li, Y., Zhang, R., Liu, X., Chen, C., Xiao, X., Feng, L., He, Y., Liu, G.: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure. Energy and Fuels. 27, 2085–2091 (2013).  https://doi.org/10.1021/ef400117f CrossRefGoogle Scholar
  27. 27.
    Janke, L., Leite, A., Nikolausz, M., Schmidt, T., Liebetrau, J., Nelles, M., Stinner, W.: Biogas production from sugarcane waste: assessment on kinetic challenges for process Designing. Int. J. Mol. Sci. 16, 20685–20703 (2015).  https://doi.org/10.3390/ijms160920685 CrossRefGoogle Scholar
  28. 28.
    Carrillo Nieves, D., Karimi, K., Sárvári Horváth, I.: Improvement of biogas production from oil palm empty fruit bunches (OPEFB). Ind. Crops Prod. 34, 1097–1101 (2011).  https://doi.org/10.1016/J.INDCROP.2011.03.022 CrossRefGoogle Scholar
  29. 29.
    Frigon, J.C., Mehta, P., Guiot, S.R.: Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioenergy. 36, 1–11 (2012).  https://doi.org/10.1016/j.biombioe.2011.02.013 CrossRefGoogle Scholar
  30. 30.
    Song, Z., Yang, G., Guo, Y., Zhang, T.: Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources. 7, 3223–3236 (2012).  https://doi.org/10.15376/biores.7.3.3223-3236 Google Scholar
  31. 31.
    Gis, W., Samson-bręk, I.: Review of technology for cleaning biogas to natural gas quality. Automot. Ind. Inst. PIMOT. 2012, 33–39 (2012)Google Scholar
  32. 32.
    Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532 (2015).  https://doi.org/10.1016/j.rser.2015.06.029 CrossRefGoogle Scholar
  33. 33.
    Cozma, P., Wukovits, W., Mămăligă, I., Friedl, A., Gavrilescu, M.: Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading. Clean Technol. Environ. Policy. 17, 373–391 (2015).  https://doi.org/10.1007/s10098-014-0787-7 CrossRefGoogle Scholar
  34. 34.
    Yong, A.S.H., Ihsan, S.I.: Simulation study for economic analysis of biogas production from agricultural biomass. Energy Procedia. 65, 204–214 (2015).  https://doi.org/10.1016/J.EGYPRO.2015.01.026 CrossRefGoogle Scholar
  35. 35.
    Bala, B.K.: System dynamics modelling and simulation of biogas production systems. Renew. Energy. 1, 723–728 (1991).  https://doi.org/10.1016/0960-1481(91)90019-L CrossRefGoogle Scholar
  36. 36.
    Panesso, A.F., Cadena, J.A., Mora, J.J., del Ordoñez, M.C.: Análisis Del Biogás Captado En Un Relleno Sanitario Como Combustible Primario Para La Generación De Energía Eléctrica. Ide@s CONCYTEG. 88, 1170–1182 (2012)Google Scholar
  37. 37.
    Meneses-Jácome, A., Osorio-Molina, A., Parra-Saldívar, R., Gallego-Suárez, D., Velásquez-Arredondo, H.I., Ruiz-Colorado, A.A.: LCA applied to elucidate opportunities for biogas from wastewaters in Colombia. Water Sci. Technol. 71, 211–219 (2015).  https://doi.org/10.2166/wst.2014.477 CrossRefGoogle Scholar
  38. 38.
    Quintero, M., Castro, L., Ortiz, C., Guzmán, C., Escalante, H.: Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresour. Technol. 108, 8–13 (2012).  https://doi.org/10.1016/j.biortech.2011.12.052 CrossRefGoogle Scholar
  39. 39.
    Nabarlatz, D., Arenas, L., Herrera, D., Niño, D.: Biogas production by anaerobic digestion of wastewater from palm oil mill industry. Ciencia, Tecnol. y Futur. 5, 73–84 (2013)CrossRefGoogle Scholar
  40. 40.
    Yepes, S.M., Montoya, L.J., Orozco, F.: Valorización de residuos agroindustrales—Frutas—en medellín y el Sur del Valle de Aburrá. Colombia. Rev. Fac. Nal. Agr. Medellín. 61, 4422–4431 (2008)Google Scholar
  41. 41.
    Guevara, C.A., Arenas, H.A., Mejía, A., Peláez, C.A.: Obtención de etanol y biogás a partir de banano de rechazo. Inf. Tecnol. 23, 19–30 (2012).  https://doi.org/10.4067/S0718-07642012000200004 CrossRefGoogle Scholar
  42. 42.
    Serna, L.D., Toro, J.S., Loaiza, S.S., Perez, Y.C., Alzate, C.C.: Agricultural waste management through energy producing biorefineries: the colombian case. Waste Biomass Valorization. 1–10 (2016).  https://doi.org/10.1007/s12649-016-9576-3
  43. 43.
    Oficina de Estudios Económicos, Ministerio de Comercio Industria y Turismo de Colombia: Perfil económico por departamento., Manizales: (2017)Google Scholar
  44. 44.
    Ministerio de: Comercio Industria y Turismo de Colombia: Perfiles económicos por departamentosGoogle Scholar
  45. 45.
    Pérez, R.: Roots, tubers, bananas and plantains. In: Speedy, A.W. (ed.) Fedding Pigs in the Tropics. FAO, Rome (1997)Google Scholar
  46. 46.
    López, J.A., Trejos, V.M., Cardona, C.A.: Parameters estimation and VLE calculation in asymmetric binary mixtures containing carbon dioxide + n-alkanols. Fluid Phase Equilib. 275, 1–7 (2009).  https://doi.org/10.1016/j.fluid.2008.09.013 CrossRefGoogle Scholar
  47. 47.
    Gabhane, J., William, S.P., Gadhe, A., Rath, R., Vaidya, A.N., Wate, S.: Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag. 34, 498–503 (2014).  https://doi.org/10.1016/j.wasman.2013.10.013 CrossRefGoogle Scholar
  48. 48.
    Morales-Rodriguez, R., Gernaey, K.V., Meyer, A.S., Sin, G.: A mathematical model for simultaneous saccharification and co-fermentation (SSCF) of C6 and C5 sugars. Chin. J. Chem. Eng. 19, 185–191 (2011).  https://doi.org/10.1016/S1004-9541(11)60152-3 CrossRefGoogle Scholar
  49. 49.
    Achinas, S., Jan, G., Euverink, W.: Theoretical analysis of biogas potential prediction from agricultural waste. Resour. Technol. 2(3): 1–5 (2016).  https://doi.org/10.1016/j.reffit.2016.08.001 CrossRefGoogle Scholar
  50. 50.
    Zhang, C., Li, J., Liu, C., Liu, X., Wang, J., Li, S., Fan, G., Zhang, L.: Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresour. Technol. 149, 353–358 (2013).  https://doi.org/10.1016/j.biortech.2013.09.070 CrossRefGoogle Scholar
  51. 51.
    Saha, N., Nagori, C.: Delignification of banana stem enhanceds biogas production. Sardar Patel Renew. Energy Res. Inst. 51 (2002)Google Scholar
  52. 52.
    ICIS: Icis princingGoogle Scholar
  53. 53.
    Moncada, J., Jaramillo, J.J., Higuita, J.C., Younes, C., Cardona, C.A.: Production of bioethanol using Chlorella vulgaris cake: a techno- economic and environmental assessment in the Colombian context Production of bioethanol using Chlorella vulgaris cake : a techno-economic and environmental assessment in the Colombian cont. (2013)Google Scholar
  54. 54.
    Young, D., Scharp, R., Cabezas, H.: The waste reduction (WAR) algorithm: environmental impacts, energy consumption, and engineering economics. Waste Manag. 20, 605–615 (2000).  https://doi.org/10.1016/S0956-053X(00)00047-7 CrossRefGoogle Scholar
  55. 55.
    Nakamura, Y., Mtui, G.: Anaerobic fermentation of woddy biomass treated by various methods. Biotechnol. Bioprocess Eng. 8, 179–182 (2003)CrossRefGoogle Scholar
  56. 56.
    Panagiotou, G., Olsson, L.: Effect of compound released during preteatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 96, 250–258 (2007).  https://doi.org/10.1002/bit CrossRefGoogle Scholar
  57. 57.
    Food and Agriculture Organization of the United Nations (FAO): Energy end use options module: Heating and cooking sub-module, biogas community. In: BEFS RA: User manual volumes. pp. 1–40 (2010)Google Scholar
  58. 58.
    Serna-Loaiza, S., Carmona-Garcia, E., Cardona, C.A.: Potential raw materials for biorefineries to ensure food security: the Cocoyam case. Ind. Crops Prod. 126, 92–102 (2018).  https://doi.org/10.1016/j.indcrop.2018.10.005 CrossRefGoogle Scholar
  59. 59.
    García, C.A., Moncada, J., Aristizábal, V., Cardona, C.A.: Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: coffee cut-stems case. Int. J. Hydrogen Energy. 42, 5849–5864 (2017).  https://doi.org/10.1016/j.ijhydene.2017.01.073 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Daniela Parra-Ramírez
    • 1
  • Juan Camilo Solarte-Toro
    • 1
  • Carlos Ariel Cardona-Alzate
    • 1
    Email author
  1. 1.Grupo de Investigación en Procesos Químicos, Catalíticos y Biotecnológicos, Instituto de Biotecnología y AgroindustriaUniversidad Nacional de Colombia sede ManizalesManizales-CaldasColombia

Personalised recommendations