Valorisation of Edible Oil Wastewater Sludge: Bioethanol and Biodiesel Production

  • Wighens I. Ngoie
  • Oluwaseun O. Oyekola
  • Daniel Ikhu-Omoregbe
  • Pamela J. WelzEmail author
Original Paper


This study aimed to reuse primary wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for biodiesel production. Results showed that the fatty acid profile of the oilseed primary wastewater sludge was favourable for biodiesel production; with a maximum 45% (w/w) monounsaturated fats extracted using ethanol at an ethanol to solid ratio of 25:1. The residue after the extraction of fats from the sludge contained sufficient fermentable sugars for bioethanol production. A maximum theoretical yield of bioethanol of 106% was obtained after enzymatic hydrolysis followed by fermentation using the industrial Saccharomyces cerevisiae strain MH-1000 at an optimum density of 2 × 105 CFU/mL. A novel nano-magnetic catalyst synthesised from cupriferous mineral processing wastes was employed. A maximum biodiesel yield of 94% was obtained at an oil to ethanol ratio of 1:9, catalyst loading of 5 wt.%, and reaction time of 180 min at 75 °C. The approach employed in this study has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impacts of conventional biodiesel production on food and land security, while simultaneously reducing waste.


Edible oil wastewater sludge Lignocellulosic compounds Nanoparticles Bioethanol Biodiesel 



The authors wish to extend their sincere appreciation to the Water Research Commission of South Africa (WRC-Project K5/2404) and the Council for Scientific and Industrial Research (CSIR/HCD-IBS programme) for funding this project, and the Cape Peninsula University of Technology for the opportunity. The content does not necessarily reflect the views and policies of the funding organisations.


  1. 1.
    Olkiewicz, M.. Fortuny, A., Stuber, F., Fabregat, A., Font, J., Bengoa Ch.: Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia Eng. 42, 634–643 (2012)CrossRefGoogle Scholar
  2. 2.
    Kumar, D., Singh, V.: Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production. Biotechnol. Biofuels 9, 228 (2016)CrossRefGoogle Scholar
  3. 3.
    Department of Water Affairs (DWA). Minimum requirements for handling, classification and disposal of hazardous waste, Pretoria: (2017)Google Scholar
  4. 4.
    Meher, L.C., Sagar, D.V., Naik, S.N.: Technical aspects of biodiesel production by transesterification—a review. Renew. Sust. Energy Rev. 10, 248–268 (2006)CrossRefGoogle Scholar
  5. 5.
    Demirbas, A., Bafail, A., Ahmad, W., Sheikh, M.: Biodiesel production from non-edible plant oils. Energy Explor. Exploit. 34, 290–318 (2016)CrossRefGoogle Scholar
  6. 6.
    Centi, G., Perathoner, S.: Catalysis by layered materials: A review. Microporous Mesoporous Mater. 107, 3 (2008)CrossRefGoogle Scholar
  7. 7.
    Xie, W., Yang, X., Fan, M.: Novel solid base catalyst for biodiesel production: mesoporous SBA-15 silica immobilized with 1,3-dicyclohexyl-2-octylguanidine. Renew Energy 80, 230–237 (2015)CrossRefGoogle Scholar
  8. 8.
    McNeff, C.V., McNeff, L.C., Yan, B., Nowlan, D.T., Rasmussen, M., Gyberg, A.E., Khron, J., Fedie, R., Hoye, T.R.: A continuous catalytic system for biodiesel production. Applied Catal. A. 343, 39–42 (2008)CrossRefGoogle Scholar
  9. 9.
    Kouzu, M., Kajita, A., Fujimori, A.: Catalytic activity of calcined scallop shell for rapeseed oil transesterification to produce biodiesel. Fuel. 182, 220–226 (2016)CrossRefGoogle Scholar
  10. 10.
    Association of Official Analytical Chemists (AOAC). 2005. AOAC 996.06. Oils and Fat. 18th EditionGoogle Scholar
  11. 11.
    Dufreche, S., Hernandez, R., French, T., Sparks, D., Zappi, M., Alley, E.: Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. J. Am. Oil Chem. Soc. 84, 181–187 (2007)CrossRefGoogle Scholar
  12. 12.
    Van Zyl, J.M., Van Rensburg, E., Van Zyl, W.H., Harms, T.M., Lynd, L.R.: A kinetic model for simultaneous saccharification and fermentation of Avicel with Saccharomyces cerevisiae. Biotechnol Bioeng. 108(4), 924–933 (2011)CrossRefGoogle Scholar
  13. 13.
    Welz, P.J., Ramond, J.-B., Cowan, D.A., Prins, A., Burton, S.G.: Ethanol degradation and the benefits of incremental priming in pilot-scale constructed wetlands. Ecol. Eng. 37, 1453–1459 (2011)CrossRefGoogle Scholar
  14. 14.
    Sun, Y., Li, X., Zhang, W., Wang, H.: A Method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf. A 308, 60–66 (2007)CrossRefGoogle Scholar
  15. 15.
    Frisch, A., Pizarek, T.: Two methods for determining the moment of a magnet inside a Cue Ball. Wabash Journal of Physics, Crawfordsville: (2008)Google Scholar
  16. 16.
    Tinprabatha, P., Hespelb, C., Chanchaonac, S., Foucherb, F.: Impact of cold conditions on diesel injection processes of biodiesel blends. Renew. Energy. 96, 270–280 (2016)CrossRefGoogle Scholar
  17. 17.
    Herrera, V.A.C., Gómez-Rodríguez, J., Hayward-Jones, P.M., Dulce María Barradas-Dermitz, D.M., Aguilar-Uscanga, M.G.: In-situ monitoring of Saccharomyces cerevisiaeITV01 bioethanol process using near-infrared spectroscopy NIRS and chemometrics. Biotechnology Progress. 32, 510–517Google Scholar
  18. 18.
    Robinson, J., Keating, J.D., Mansfield, S.D., Saddler, J.N.: The fermentability of concentrated softwood-derived hemicellulose fractions with and without supplemental cellulose hydrolysates. Enz. Microbial. Technol. 33, 757–765 (2003)CrossRefGoogle Scholar
  19. 19.
    Tan, K.T., Lee, K.: A review on supercritical fluids (SCF) technology in sustainable biodiesel production: Potential and challenges. Renew. Sustain. Energy Rev. (5)15, 2452–2456 (2014)Google Scholar
  20. 20.
    Althuri, A.A., Sanjeev, K., Knawang, C.S., Banerjee, R.: Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. 431–444 (2016)Google Scholar
  21. 21.
    Zabed, H., Faruq, G., Sahu, J.N.: Bioethanol production from fermentable sugar juice. Sci. World J. 1, 1–11 (2014)CrossRefGoogle Scholar
  22. 22.
    Boulbabac, L., Belgaib, J., Hedibenamor, N.H.: Production of bio-ethanol from three varieties of dates. Biofuels Future Bioecon.. 4(8) (2017)Google Scholar
  23. 23.
    Liu, X., He, H., Wang, Y., Zhu, S.: Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal. Commun. 8, 1107–1111 (2007)CrossRefGoogle Scholar
  24. 24.
    Thomsen, M.H., Oleskowicz, P.P., Przemyslaw, L., Holm-Nielsen, J.B.: Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure. Biores. Technol. 99(13), 5327–5334 (2008)CrossRefGoogle Scholar
  25. 25.
    Laopaiboon, L., Thanonkeo, Jaisil, P., Laopaiboon, P.: Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 23, 1497–1501 (2007)CrossRefGoogle Scholar
  26. 26.
    Jamil, F., Al-Muhtaseb, A.H., Al-Haj, L., Al-Hinai, M.A., Hellier, P., Rashid, U.: Optimization of oil extractiom waste “Date pits” for biodiesel production. Energ. Convers. Manag. 117, 264–272 (2016)CrossRefGoogle Scholar
  27. 27.
    Teo, S.H., Rashid, U., Taufiq-Yap, Y.H.: Biodiesel production from crude Jatropha Curcas oil using calcium based mixed oxide catalysts. Fuel. 136, 244–252 (2014)CrossRefGoogle Scholar
  28. 28.
    Taufiq-Yap, Y.H., Lee, H.V.: Higher grade biodiesel production by using solid heterogeneous catalysts. In:Pogaku, R., Sarbatly, R.H.. Springer: US, pp. 153–176 (2013)Google Scholar
  29. 29.
    Taufiq-Yap, Y.H., Teo, S.H., Rashid, U., Islam, A., Hussien, M.Z., Lee, K.T.: Transesterification of Jatropha curcas crude oil to biodiesel on calcium lanthanum mixed oxide catalyst: effect of stoichiometric composition. Energy Convers Manage 88, 1290–1296 (2014)CrossRefGoogle Scholar
  30. 30.
    Chen, S.Y., Mochizuki, T., Abe, Y., Toba, M., Yoshimura, Y.: Ti-incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high-quality biodiesel fuels. Appl. Catal. B. Environ. 148–149, 344–356 (2014)CrossRefGoogle Scholar
  31. 31.
    Wang, L., Dong, X., Jiang, H., Li, G., Zhang, M.: Ordered mesoporous carbon supported ferric sulfate: a novel catalyst for the esterification of free fatty acids in waste cooking oil. Fuel Process Technol. 128, 10–16 (2014)CrossRefGoogle Scholar
  32. 32.
    Berchmans, H.J., Morishita, K., Takarada, T.: Kinetic study of hydroxide-catalyzed methanolysis of Jatropha curcas–waste food oil mixture for biodiesel production. Fuel. 104, 46–52 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Biomedical and Microbial BiotechnologyCape Peninsula University of TechnologyCape TownSouth Africa
  2. 2.Department of Chemical EngineeringCape Peninsula University of TechnologyCape TownSouth Africa

Personalised recommendations