Catalytic Upgrading of Pyrolytic Oil via In-situ Hydrodeoxygenation

  • Isah Yakub MohammedEmail author
  • Yousif Abdalla Abakr
  • Robert Mokaya
Original Paper


Lignocellulosic biomass derived from non-food crops cultivated on lands that are increasingly marginal for more favoured major crops is a potential source of sustainable renewable energy. This study explores the transformation of crude organic phase pyrolytic oil derived from Napier grass biomass into high-grade biofuel precursors via hydrodeoxygenation reaction over platinum and palladium catalysts with in-situ hydrogen generation from methanol. The reaction was conducted in a high-pressure stainless steel batch reactor at 350 °C, 20 wt% methanol ratio, 2 wt% catalyst loading and 60 min reaction time. The result of physicochemical analysis showed that the higher heating value of the organic liquid products collected over the catalysts increased by 35–40% relative to the raw sample. Gas chromatography-mass spectrometry results revealed significant reductions in the oxygenated compounds such as methoxyaromatics, methoxyphenols, acids, aldehydes. The degree of deoxygenation and overall extent of upgrading observed was 50–54% and 56–60%, respectively. The gas products collected were mainly carbon monoxide, carbon dioxide, hydrogen and methane. Hydrodeoxygenation, hydrogenolysis, hydrogenation, dehydration, demethylation, hydrocracking, decarbonylation and decarboxylation were the main upgrading reactions, and a multiple reaction network was proposed.


Napier grass Pyrolytic oil Deoxygenation Reaction pathways Pd/C Pt/C 



This work was supported by the Energy for Life /EPSRC Global Challenges Research Fund (Project No: RIS 355037(UK) and IAE M0001 (UNMC) 2017/18). Authors also acknowledge the support from Crops for the Future (CFF), EcoKnights Malaysia and the University of Nottingham.

Supplementary material

12649_2019_613_MOESM1_ESM.docx (307 kb)
Supplementary material 1 (DOCX 307 KB)


  1. 1.
    Mohammed, I.Y.: Abakr, Y.A.: Kazi, F.K.: Yusup, S.: Alshareef, I.: Chin, S.A.: Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion. Energies 8(5), 3403–3417 (2015)CrossRefGoogle Scholar
  2. 2.
    Mohammed, I.Y.: Abakr, Y.A.: Yusup, S.: Kazi, F.K.: Valorization of Napier grass via intermediate pyrolysis: Optimization using response surface methodology and pyrolysis products characterization. J. Clean. Prod. 142, 1848–1866 (2017)CrossRefGoogle Scholar
  3. 3.
    Perkins, G.: Bhaskar, T.: Konarova, M.: Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renew. Sustain. Energy Rev. 90, 292–315 (2018)CrossRefGoogle Scholar
  4. 4.
    Strezov, V., Evans, T.J., Hayman, C.: Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour. Technol. 99, 8394–8399 (2008)CrossRefGoogle Scholar
  5. 5.
    Lee, M.-K., Tsai, W.-T., Tsaic, Y.-L., Lin, S.-H.: Pyrolysis of Napier grass in an induction-heating reactor. J. Anal. Appl. Pyrol. 88, 110–116 (2010)CrossRefGoogle Scholar
  6. 6.
    Suntivarakorn, R.: Treedet, W.: Singbua, P.: Teeramaetawat, N.: Fast pyrolysis from Napier grass for pyrolysis oil production by using circulating Fluidized Bed Reactor: Improvement of pyrolysis system and production cost. Energy Rep. 4, 565–575 (2018)CrossRefGoogle Scholar
  7. 7.
    Mohammed, I.Y.: Abakr, Y.A.: Yusup, S.: Alaba, P.A.: Morris, K.I.: Sani, Y.M.: Kazi, F.K.: Upgrading of Napier grass pyrolytic oil using microporous and hierarchical mesoporous zeolites: Products distribution, composition and reaction pathways. J. Clean. Prod. 162, 817–829 (2017)CrossRefGoogle Scholar
  8. 8.
    Mohammed, I.Y.: Pyrolysis of Napier grass to bio-oil and catalytic upgrading to high grade bio-fuel (Doctoral dissertation, University of Nottingham, (2017)Google Scholar
  9. 9.
    Ahmadi, A.: Yuan, Z.: Rohani, S.: Xu, C.: Effects of nano-structured CoMo catalysts on hydrodeoxygenation of fast pyrolysis oil in supercritical ethanol. Catal. Today 269, 182–194 (2016)CrossRefGoogle Scholar
  10. 10.
    Mortensen, P.M.: Grunwaldt, J.D.: Jensen, P.A.: Jensen, A.D.: Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2. Catal. Today 259(Part 2), 277–284 (2016)CrossRefGoogle Scholar
  11. 11.
    Patel, M.: Kumar, A.: Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review. Renew. Sustain. Energy Rev. 58, 1293–1307 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Widayatno, W.B.: Guan, G.: Rizkiana, J.: Yang, J.: Hao, X.: Tsutsumi, A.: Abudula, A.: Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability. Appl. Catal. B 186, 166–172 (2016)CrossRefGoogle Scholar
  13. 13.
    Tan, Z.: Xu, X.: Liu, Y.: Zhang, C.: Zhai, Y.: Liu, P.: Li, Y.: Zhang, R.: Upgrading bio-oil model compounds phenol and furfural with in situ generated hydrogen. Environ. Prog. Sustain. Energy 33(3), 751–755 (2014)CrossRefGoogle Scholar
  14. 14.
    Feng, J.: Hse, C.Y.: Yang, Z.: Wang, K.: Jiang, J.: Xu, J.: Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts. Appl. Catal. A 542, 163–173 (2017)CrossRefGoogle Scholar
  15. 15.
    Xu, Y.: Li, Y.: Wang, C.: Wang, C.: Ma, L.: Wang, T.: Zhang, X.: Zhang, Q.: In-situ hydrogenation of model compounds and raw bio-oil over Ni/CMK-3 catalyst. Fuel Process. Technol. 161, 226–231 (2017)CrossRefGoogle Scholar
  16. 16.
    Cheng, S.: Wei, L.: Alsowij, M.R.: Corbin, F.: Julson, J.: Boakye, E.: Raynie, D.: In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst. J. Energy Inst. 91, 163–171 (2018)CrossRefGoogle Scholar
  17. 17.
    Sing, K.S.: Williams, R.T.: Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2004)CrossRefGoogle Scholar
  18. 18.
    Ruiz-García, C.: Heras, F.: Alonso-Morales, N.: Calvo, L.: Rodriguez, J.J.: Gilarranz, M.A.: Enhancement of the activity of Pd/C catalysts in aqueous phase hydrodechlorination through doping of carbon supports. Catal. Sci. Technol. 8, 2598–2605 (2018)CrossRefGoogle Scholar
  19. 19.
    Wei, Q.: Ma, Q.: Zuo, P.: Fan, H.: Qu, S.: Shen, W.: Hollow structure and electron promotion effect of mesoporous Pd/CeO2 catalyst for enhanced catalytic hydrogenation. ChemCatChem 10(5), 1019–1026 (2018)CrossRefGoogle Scholar
  20. 20.
    Gonzalez, G.: Sagarzazu, A.: Cordova, A.: Gomes, M.E.: Salas, J.: Contreras, L.: Noris-Suarez, K.: Lascano, L.: Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery. Microporous Mesoporous Mater. 256, 251–265 (2018)CrossRefGoogle Scholar
  21. 21.
    Bai, Z.: Liu, Q.: Lei, J.: Jin, H.: Investigation on the mid-temperature solar thermochemical power generation system with methanol decomposition. Appl. Energy 217, 56–65 (2018)CrossRefGoogle Scholar
  22. 22.
    Wang, C.: Luo, J.: Liao, V.: Lee, J.D.: Onn, T.M.: Murray, C.B.: A comparison of furfural hydrodeoxygenation over Pt-Co and Ni-Fe catalysts at high and low H2 pressures. Catal. Today 302, 73–79 (2018)CrossRefGoogle Scholar
  23. 23.
    Elkasabi, Y.: Mullen, C.A.: Pighinelli, A.L.: Boateng, A.A.: Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts. Fuel Process. Technol. 123, 11–18 (2014)CrossRefGoogle Scholar
  24. 24.
    Volkov, A.: Gustafson, K.P.: Tai, C.W.: Verho, O.: Bäckvall, J.E.: Adolfsson, H.: Mild deoxygenation of aromatic ketones and aldehydes over Pd/C using polymethylhydrosiloxane as the reducing agent. Angew. Chem. Int. Ed. 54(17), 5122–5126 (2015)CrossRefGoogle Scholar
  25. 25.
    Rodríguez-Gattorno, G.: Alemán-Vázquez, L.O.: Angeles-Franco, X.: Cano-Domínguez, J.L.: Villagómez-Ibarra, R.: Cyclohexane ring opening on alumina-supported Rh and Ir nanoparticles. Energy Fuels 21(2), 1122–1126 (2007)CrossRefGoogle Scholar
  26. 26.
    Goti, A.: Cordero, F.M.: Brandi, A.: Cycloadditions onto methylene-and alkylidenecyclopropane derivatives. In: Small ring compounds in organic synthesis, pp. 1–97. Berlin, Springer (1996)Google Scholar
  27. 27.
    Keil, F.J.: Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater. 29(1–2), 49–66 (1999)CrossRefGoogle Scholar
  28. 28.
    Tyagi, A.: Matsumoto, T.: Kato, T.: Yoshida, H.: Direct C–H bond activation of ethers and successive C–C bond formation with benzene by a bifunctional palladium–titania photocatalyst. Catal. Sci. Technol. 6(12), 4577–4583 (2016)CrossRefGoogle Scholar
  29. 29.
    Xu, Y.: Long, J.: Liu, Q.: Li, Y.: Wang, C.: Zhang, Q.: Lv, W.: Zhang, X.: Qiu, S.: Wang, T.: and Ma, L.: In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst. Energy Convers. Manag. 89, 188–196 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Isah Yakub Mohammed
    • 1
    • 3
    Email author
  • Yousif Abdalla Abakr
    • 1
  • Robert Mokaya
    • 2
  1. 1.Department of Mechanical, Manufacturing and Material EngineeringThe University of Nottingham Malaysia CampusSemenyihMalaysia
  2. 2.School of ChemistryUniversity of NottinghamNottinghamUK
  3. 3.Department of Chemical EngineeringAbubakar Tafawa Balewa UniversityBauchiNigeria

Personalised recommendations