Conversion of Agro By-Products to an Alkaline Protease by Aspergillus tamarii and the Usefulness of Its Metabolic Heat for Better Process Understanding

  • Balaji Dhandapani
  • Surianarayanan MahadevanEmail author
  • Shanmugavel Muthiah
Original Paper


The present study focuses on the measurement of metabolic heat profile for the proteolytic activity by the Aspergillus tamarii. Here, agricultural by-products like wheat bran, cottonseed meal, soya flour and skimmed milk were utilized to maximize the enzyme expression. The study revealed that the maximum heat release (69.5 kJ/L) was dominantly from the oxidative breakdown of the nitrogen source i.e. the cottonseed. A distinguishable growth and non-growth enzyme expression phases of A. tamarii could be identified from the metabolic heat profiles. A maximum enzyme expression of 1.511 U/mL was obtained with a 1% supply of nitrogen source. Metabolic heat production rates were correlated to fungal protease secretion for the first time.


Agricultural by-products Biological real-time reaction calorimeter Mass transfer Metabolic heat Protease 



Cell dry weight (g/L)


Concentration of dissolved oxygen in the fermentation broth (mg/L)


Cottonseed meal


Volumetric mass transfer coefficient (1/min)


Microbial type culture collection


Oxygen uptake rate (mg/L.min)


Heat evolution rate (W/L)


Soya flour


Skimmed milk


Time (hour)


Temperature of jacket oil (°C)


Temperature of reactor contents (°C)


Wheat bran


Heat yield coefficient with respect to OUR (kJ/mol)


Heat yield coefficient with respect to product formation (kJ/mg)


Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest in the publication of this manuscript.

Supplementary material

12649_2019_608_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1138 KB)


  1. 1.
    Shanmugam, B.K., Easwaran, S.N., Lakra, R., Deepa, P.R., Mahadevan, S.: Metabolic pathway and role of individual species in the bacterial consortium for biodegradation of azo dye: a biocalorimetric investigation. Chemosphere. 188, 81–89 (2017)CrossRefGoogle Scholar
  2. 2.
    Von Stockar, U., Marison, I.W.: The use of calorimetry in biotechnology. In: Bioprocesses and Engineering, pp. 93–136. Springer, Berlin (1989)CrossRefGoogle Scholar
  3. 3.
    Voisard, D., Von Stockar, U., Marison, I.W.: Quantitative calorimetric investigation of fed-batch cultures of Bacillus sphaericus 1593M. Thermochim. Acta 394, 99–111 (2002)CrossRefGoogle Scholar
  4. 4.
    Dhandapani, B., Mahadevan, S., Dhilipkumar, S.S., Rajkumar, S., Mandal, A.B.: Impact of aeration and agitation on metabolic heat and protease secretion of Aspergillus tamarii in a real-time biological reaction calorimeter. Appl. Microbiol. Biotechnol. 94, 1533–1542 (2012). CrossRefGoogle Scholar
  5. 5.
    Mahadevan, S., Sivaprakasam, S.: Bioenergetic studies on aerobic growth of Pseudomonas aeruginosa in a single-substrate media. J. Chem. Technol. Biotechnol. 84, 1234–1239 (2009). CrossRefGoogle Scholar
  6. 6.
    Schuler, M.M., Sivaprakasam, S., Freeland, B., Hama, A., Hughes, K.-M., Marison, I.W.: Investigation of the potential of biocalorimetry as a process analytical technology (PAT) tool for monitoring and control of Crabtree-negative yeast cultures. Appl. Microbiol. Biotechnol. 93, 575–584 (2012)CrossRefGoogle Scholar
  7. 7.
    Mohan, N., Sivaprakasam, S.: Heat compensation calorimeter as a process analytical tool to monitor and control bioprocess systems. Ind. Eng. Chem. Res. 56, 8416–8427 (2017)CrossRefGoogle Scholar
  8. 8.
    Kong, W., Zhao, Y., Xiao, X., Li, Z., Jin, C., Li, H.: Investigation of the anti-fungal activity of coptisine on Candida albicans growth by microcalorimetry combined with principal component analysis. J. Appl. Microbiol. 107, 1072–1080 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Wadsö, L., Larsson, L., Bjurman, J.: Correlating two methods of quantifying fungal activity: heat production by isothermal calorimetry and ergosterol amount by gas chromatography–tandem mass spectrometry. Thermochim. Acta 458, 77–83 (2007)CrossRefGoogle Scholar
  10. 10.
    Wadso, L., Li, Y., Bjurman, J.: Measurements on two mould fungi with a calorespirometric method. Thermochim. Acta. 422, 63–68 (2004). CrossRefGoogle Scholar
  11. 11.
    Sivaprakasam, S., Dhandapani, B., Mahadevan, S.: Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment. Brazilian J. Microbiol. 42, 1506–1515 (2011). CrossRefGoogle Scholar
  12. 12.
    Anandan, D., Marmer, W.N., Dudley, R.L.: Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamarii. J. Ind. Microbiol. Biotechnol. 34, 339–347 (2007)CrossRefGoogle Scholar
  13. 13.
    Boer, C.G., Peralta, R.M.: Production of extracellular protease by Aspergillus tamarii. J. Basic Microbiol. Int. J. Biochem. Physiol. Genet. Morphol. Ecol. Microorg. 40, 75–81 (2000)Google Scholar
  14. 14.
    Dayanandan, A., Kanagaraj, J., Sounderraj, L., Govindaraju, R., Rajkumar, G.S.: Application of an alkaline protease in leather processing: An ecofriendly approach. J. Clean. Prod. 11, 533–536 (2003). CrossRefGoogle Scholar
  15. 15.
    Reddy, L.V.A., Wee, Y.J., Yun, J.S., Ryu, H.W.: Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresour. Technol. 99, 2242–2249 (2008). CrossRefGoogle Scholar
  16. 16.
    Dhandapani, B., Mahadevan, S., Mandal, A.B.: Energetics of growth of Aspergillus tamarii in a biological real-time reaction calorimeter. Appl. Microbiol. Biotechnol. 93, 1927–1936 (2012). CrossRefGoogle Scholar
  17. 17.
    Türker, M.: Development of biocalorimetry as a technique for process monitoring and control in technical scale fermentations. Thermochim. Acta 419, 73–81 (2004)CrossRefGoogle Scholar
  18. 18.
    Luciana, A., de Azeredo, I., Castilho, L.R., Selma, G., Leite, F., Rosalie, R., Coelho, R., Denise, M., Freire, G.: Protease production by Streptomyces sp. isolated from Brazilian Cerrado Soil. Appl. Biochem. Biotechnol. 108, 749 (2003)CrossRefGoogle Scholar
  19. 19.
    Mehta, V.J., Thumar, J.T., Singh, S.P.: Production of alkaline protease from an alkaliphilic actinomycete. Bioresour. Technol. 97, 1650–1654 (2006). CrossRefGoogle Scholar
  20. 20.
    Garcia-Ochoa, F., Gomez, E., Santos, V.E., Merchuk, J.C.: Oxygen uptake rate in microbial processes: an overview. Biochem. Eng. J. 49, 289–307 (2010). CrossRefGoogle Scholar
  21. 21.
    Potumarthi, R., Jetty, C.S.: A.: Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: effect of aeration and agitation regimes. Biochem. Eng. J. 34, 185–192 (2007). CrossRefGoogle Scholar
  22. 22.
    Kanekar, P.P., Nilegaonkar, S.S., Sarnaik, S.S., Kelkar, A.S.: Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresour. Technol. 85, 87–93 (2002)CrossRefGoogle Scholar
  23. 23.
    Kaur, S., Vohra, R.M., Kapoor, M., Beg, Q.K., Hoondal, G.S.: Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J. Microbiol. Biotechnol. 17, 125–129 (2001)CrossRefGoogle Scholar
  24. 24.
    Wang, L., Ridgway, D., Gu, T., Moo-Young, M.: Effects of process parameters on heterologous protein production in Aspergillus niger fermentation. J. Chem. Technol. Biotechnol. J Chem Technol Biotechnol. 78, 1259–1266 (2003). CrossRefGoogle Scholar
  25. 25.
    Rao, Y.K., Lu, S.C., Liu, B.L., Tzeng, Y.M.: Enhanced production of an extracellular protease from Beauveria bassiana by optimization of cultivation processes. Biochem. Eng. J. 28, 57–66 (2006). CrossRefGoogle Scholar
  26. 26.
    Jang, J.W., Ko, J.H., Kim, E.K., Jang, W.H., Kang, J.H., Yoo, O.J.: Enhanced thermal stability of an alkaline protease, AprP, isolated from a Pseudomonas sp. by mutation at an autoproteolysis site, Ser-331. Biotechnol. Appl. Biochem. 34, 81–84 (2001)CrossRefGoogle Scholar
  27. 27.
    Gomaa, E.Z.: Optimization and characterization of alkaline protease and carboxymethyl-cellulase produced by Bacillus pumillus grown on Ficus nitida wastes. Br. J. Microbiol. 44, 529–537 (2013)CrossRefGoogle Scholar
  28. 28.
    Birou, B., Marison, I.W., Stockar, U., Von: Calorimetric investigation of aerobic fermentations. Biotechnol. Bioeng. 30, 650–660 (1987). CrossRefGoogle Scholar
  29. 29.
    Maskow, T., Kemp, R., Buchholz, F., Schubert, T., Kiesel, B., Harms, H.: What heat is telling us about microbial conversions in nature and technology: from chip-to megacalorimetry. Microb. Biotechnol. 3, 269–284 (2010). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Balaji Dhandapani
    • 1
  • Surianarayanan Mahadevan
    • 2
    Email author
  • Shanmugavel Muthiah
    • 3
  1. 1.Department of Chemical EngineeringSSN College of EngineeringChennaiIndia
  2. 2.Chemical Engineering DepartmentCSIR-Central Leather Research InstituteChennaiIndia
  3. 3.Biological Material LaboratoryCSIR-Central Leather Research InstituteChennaiIndia

Personalised recommendations