Advertisement

Influence of mixing ratio and turning frequency on the co-composting of biowaste with sugarcane filter cake: a mixture experimental design

  • Jonathan Soto-Paz
  • Edgar Ricardo Oviedo-Ocaña
  • Pablo Cesar Manyoma
  • Luis Fernando Marmolejo-Rebellón
  • Patricia Torres-Lozada
  • Raquel Barrena
  • Antoni Sánchez
  • Dimitrios KomilisEmail author
Original Paper
  • 20 Downloads

Abstract

Although composting is an effective option for the use of biowaste (BW), its physicochemical quality has limiting conditions (e.g., low C/N ratio, phosphorus and high moisture) that affect the process and the quality of the product. The incorporation of amendment materials (AM) and the variation in the turning frequency (TF) are two of the most widely used operational strategies to improve these limiting conditions. However, the effect of the simultaneous application of these two strategies on the BW composting process has been few studied. In this article, the inclusion of sugarcane filter-cake (SFC) as an AM in BW at several mixing ratios (BW:SFC (w/w); 100:00, 90:10, 80:20 and 70:30) and three TFs (1, 2 and 3 turnings/week) was evaluated at a pilot scale. A Box-Behnken experimental design was used to analyse the simultaneous effects of the two strategies. Results showed that the application of both operational strategies simultaneously has a significant effect (p ≤ 0.05) on process parameters [i.e., stabilization time, temperature, pH, oxygen concentration, Total Organic Carbon (TOC), Total Nitrogen (TN) and Total Phosphorus (TP)] and on product quality. A mixture ratio of 80:20% (BW:SFC) and a TF of 2 reduced processing time by 13 days compared to the control treatment, maintained temperatures above 65 °C and increased the TOC (> 15%), TN (2.4%) and TP (1.6%) contents at the end of the composting process, thus improving the quality of the final product.

Keywords

Composting Mixture experimental design Bulking agent Turning Aeration Pilot scale 

Abbreviations

BW

Biowaste

FC

Fecal coliforms

MR

Mixing ratio

OM

Organic matter

SFC

Sugarcane filter cake

SRI

Static respirometric index

RI

Dynamic respirometric index

TF

Turning frequency

TOC

Total organic carbon

TC

Total coliforms

TN

Total nitrogen

TP

Total phosphorus

TK

Total potassium

VS

Volatile solids (organic matter)

Notes

Acknowledgements

The authors thank the Universidad del Valle for financing the research project -CI 2962″ and COLCIENCIAS for financing the PhD student, Jonathan Soto-Paz, as a national doctorate fellow announcement 727 of 2015. R. Oviedo-Ocaña thanks Universidad Industrial de Santander (UIS) for the support received during the development of this research and for financing the reseach project-CI 8581.

References

  1. 1.
    Thi, N., Kumar, G., Lin, C.-Y.: An overview of food waste management in developing countries: current status and future perspective. J. Environ. Manag. 157, 220–229 (2015).  https://doi.org/10.1016/j.jenvman.2015.04.022 CrossRefGoogle Scholar
  2. 2.
    Li, Z., Lu, H., Ren, L., He, L.: Experimental and modeling approaches for food waste composting: a review. Chemosphere. 93(7), 1247–1257 (2013).  https://doi.org/10.1016/j.chemosphere.2013.06.064 CrossRefGoogle Scholar
  3. 3.
    Faverial, J., Boval, M., Sierra, J., Sauvant, D.: End-product quality of composts produced under tropical and temperate climates using different raw materials: a meta-analysis. J. Environ. Manag. 183, 909–916 (2016)CrossRefGoogle Scholar
  4. 4.
    Götze, R., Boldrin, A., Scheutz, C., Astrup, T.F.: Physico-chemical characterisation of material fractions in household waste: overview of data in literature. Waste Manag. 49, 3–14 (2016).  https://doi.org/10.1016/j.wasman.2016.01.008 CrossRefGoogle Scholar
  5. 5.
    Onwosi, C.O., Igbokwe, V.C., Odimba, J.N., Eke, I.E., Nwankwoala, M.O., Iroh, I.N., Ezeogu, L.I.: Composting technology in waste stabilization: on the methods, challenges and future prospects. J. Environ. Manag. 190, 140–157 (2017)CrossRefGoogle Scholar
  6. 6.
    Barthod, J., Rumpel, C., Dignac, M.-F.: Composting with additives to improve organic amendments. A review. Agron. Sustain. Dev. 38(2), 17 (2018)CrossRefGoogle Scholar
  7. 7.
    Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., Sánchez, A.: Composting of food wastes: status and challenges. Bioresour. Technol. (2017)Google Scholar
  8. 8.
    Kumar, M., Ou, Y.-L., Lin, J.-G.: Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 30(4), 602–609 (2010).  https://doi.org/10.1016/j.wasman.2009.11.023 CrossRefGoogle Scholar
  9. 9.
    Adhikari, B., Barrington, S., Martinez, J., King, S.: Characterization of food waste and bulking agents for composting. Waste Manag. 28(5), 795–804 (2008).  https://doi.org/10.1016/j.wasman.2007.08.018 CrossRefGoogle Scholar
  10. 10.
    Ogunwande, G.A., Osunade, J.A., Adekalu, K.O., Ogunjimi, L.A.O.: Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency. Biores. Technol. 99(16), 7495–7503 (2008)CrossRefGoogle Scholar
  11. 11.
    Getahun, T., Nigusie, A., Entele, T., Gerven, T.V., Bruggen, B.V.d.: Effect of turning frequencies on composting biodegradable municipal solid waste quality. Resour. Conserv. Recycl. 65, 79–84 (2012).  https://doi.org/10.1016/j.resconrec.2012.05.007 CrossRefGoogle Scholar
  12. 12.
    Oviedo Ocaña, E.R., Marmolejo Rebellón, L.F., Torres Lozada, P.: Influencia de la frecuencia de volteo para el control de la humedad de los sustratos en el compostaje de biorresiduos de origen municipal. Revista internacional de contaminación ambiental 30, 91–100 (2014)Google Scholar
  13. 13.
    Vakili, M., Haque, A.A.M., Gholami, Z.: Effect of manual turning frequency on physico-chemical parameters during the oil palm frond and cow dung composting. Casp. J. Appl. Sci. Res. 1(12), 49–59 (2012)Google Scholar
  14. 14.
    Jiang, T., Schuchardt, F., Li, G.X., Guo, R., Luo, Y.M.: Gaseous emission during the composting of pig feces from Chinese Ganqinfen system. Chemosphere 90(4), 1545–1551 (2013)CrossRefGoogle Scholar
  15. 15.
    Jiang-ming, Z.: Effect of turning frequency on co-composting pig manure and fungus residue. J. Air Waste Manag. Assoc. 67(3), 313–321 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Iqbal, M.K., Nadeem, A., Sherazi, F., Khan, R.A.: Optimization of process parameters for kitchen waste composting by response surface methodology. Int. J. Environ. Sci. Technol. 12(5), 1759–1768 (2015)CrossRefGoogle Scholar
  17. 17.
    Cabeza, I., López, R., Ruiz-Montoya, M., Díaz, M.: Maximising municipal solid waste–Legume trimming residue mixture degradation in composting by control parameters optimization. J. Environ. Manag. 128, 266–273 (2013)CrossRefGoogle Scholar
  18. 18.
    Meunchang, S., Panichsakpatana, S., Weaver, R.W.: Co-composting of filter cake and bagasse; by-products from a sugar mill. Biores. Technol. 96(4), 437–442 (2005).  https://doi.org/10.1016/j.biortech.2004.05.024 CrossRefGoogle Scholar
  19. 19.
    Prado, R.d.M., Caione, G., Campos, C.N.S.: Filter cake and vinasse as fertilizers contributing to conservation agriculture. Appl. Environ. Soil Sci. 2013, 1–8 (2013)CrossRefGoogle Scholar
  20. 20.
    Bryndum, S., Muschler, R., Nigussie, A., Magid, J., de Neergaard, A.: Reduced turning frequency and delayed poultry manure addition reduces N loss from sugarcane compost. Waste Manag. 65, 169–177 (2017).  https://doi.org/10.1016/j.wasman.2017.04.001 CrossRefGoogle Scholar
  21. 21.
    Oviedo, R., Marmolejo, L., Torres, P.: Advances in research on biowaste composting in small municipalities of developing countries. Lessons from Colombia. Rev. Ing. Inv. Tecnol. 18, 31–42 (2017)Google Scholar
  22. 22.
    Hemidat, S., Jaar, M., Nassour, A., Nelles, M.: Monitoring of composting process parameters: a case study in Jordan. Waste Biomass Valorization 9(12), 2257–2274 (2018).  https://doi.org/10.1007/s12649-018-0197-x CrossRefGoogle Scholar
  23. 23.
    Edjabou, M.E., Jensen, M.B., Götze, R., Pivnenko, K., Petersen, C., Scheutz, C., Astrup, T.F.: Municipal solid waste composition: sampling methodology, statistical analyses, and case study evaluation. Waste Manag. 36, 12–23 (2015)CrossRefGoogle Scholar
  24. 24.
    ICONTEC: Norma Técnica Colombiana 5167. Productos para la Industria Agrícola, Productos Orgánicos Usados como Abonos o Fertilizantes y Enmiendas de Suelo, p. 32. (2004)Google Scholar
  25. 25.
    Van Soest, P.J., Wine, R.: Uso de detergentes en el análisis de alimentos fibrosos. IV. Determinación de permanganato. Assoc. Of. Anal. Chem 50(1), 6 (1967)Google Scholar
  26. 26.
    Barrena Gómez, R., Vázquez Lima, F., Gordillo Bolasell, M.A., Gea, T., Sánchez Ferrer, A.: Respirometric assays at fixed and process temperatures to monitor composting process. Biores. Technol. 96(10), 1153–1159 (2005).  https://doi.org/10.1016/j.biortech.2004.09.026 CrossRefGoogle Scholar
  27. 27.
    Díaz, M., Eugenio, M., López, F., García, J., Yañez, R.: Neural models for optimizing lignocellulosic residues composting process. Waste Biomass Valorization 3(3), 319–331 (2012)CrossRefGoogle Scholar
  28. 28.
    Evangelou, A.C., Chintzios, V., Komilis, D.P.: Effect of aeration rate on the respiration activity of the fresh organic fraction of municipal solid wastes. In: EurAsia Waste Management Symposium, 2–4 May 2016, YTU 2010 Congress Center, İstanbul/Türkiye (2016)Google Scholar
  29. 29.
    Díaz, M., Alfaro, A., García, M., Eugenio, M., Ariza, J., López, F.: Ethanol pulping from Tagasaste (Chamaecytisus proliferus LF. ssp palmensis). A new promising source for cellulose pulp. Ind. Eng. Chem. Res. 43(8), 1875–1881 (2004)CrossRefGoogle Scholar
  30. 30.
    Manyapu, V., Mandpe, A., Kumar, S.: Synergistic effect of fly ash in in-vessel composting of biomass and kitchen waste. Biores. Technol. 251, 114–120 (2018).  https://doi.org/10.1016/j.biortech.2017.12.039 CrossRefGoogle Scholar
  31. 31.
    Barrena, R., Lima, F.V., Bolasell, M.A.G., Gea, T., Ferrer, A.S.: Respirometric assays at fixed and process temperatures to monitor composting process. Bioresour. Technol. 96(10), 1153–1159 (2005)CrossRefGoogle Scholar
  32. 32.
    George, P.A.O., Eras, J.J.C., Gutierrez, A.S., Hens, L., Vandecasteele, C.: Residue from sugarcane juice filtration (filter cake): energy use at the sugar factory. Waste Biomass Valorization 1(4), 407–413 (2010)CrossRefGoogle Scholar
  33. 33.
    Torres Lozada, P., Escobar, J.C., Pérez Vidal, A., Imery, R., Nates, P., Sánchez, G., Sánchez, M., Bermúdez, A.: Influencia del material de enmienda en el compostaje de lodos de Plantas de Tratamiento de Agua Residuales-PTAR. Ing. Inv. 25, 54–60 (2005)Google Scholar
  34. 34.
    Zhou, H., Zhao, Y., Yang, H., Zhu, L., Cai, B., Luo, S., Cao, J., Wei, Z.: Transformation of organic nitrogen fractions with different molecular weights during different organic wastes composting. Biores. Technol. 262, 221–228 (2018).  https://doi.org/10.1016/j.biortech.2018.04.088 CrossRefGoogle Scholar
  35. 35.
    Sundberg, C., Jönsson, H.: Higher pH and faster decomposition in biowaste composting by increased aeration. Waste Manag. 28(3), 518–526 (2008).  https://doi.org/10.1016/j.wasman.2007.01.011 CrossRefGoogle Scholar
  36. 36.
    Cáceres, R., Malińska, K., Marfà, O.: Nitrification within composting: a review. Waste Manag. 72, 119–137 (2018).  https://doi.org/10.1016/j.wasman.2017.10.049 CrossRefGoogle Scholar
  37. 37.
    Tognetti, C., Mazzarino, M., Laos, F.: Comprehensive quality assessment of municipal organic waste composts produced by different preparation methods. Waste Manag. 31(6), 1146–1152 (2011)CrossRefGoogle Scholar
  38. 38.
    El Kader, N.A., Robin, P., Paillat, J.-M., Leterme, P.: Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting. Biores. Technol. 98(14), 2619–2628 (2007).  https://doi.org/10.1016/j.biortech.2006.07.035 CrossRefGoogle Scholar
  39. 39.
    Tiquia, S.: Reduction of compost phytotoxicity during the process of decomposition. Chemosphere 79(5), 506–512 (2010)CrossRefGoogle Scholar
  40. 40.
    Rich, N., Bharti, A.: Assessment of different types of in-vessel composters and its effect on stabilization of MSW compost. Int. Res. J. Eng. Technol. 2, 37–42 (2015)Google Scholar
  41. 41.
    Waqas, M., Nizami, A.S., Aburiazaiza, A.S., Barakat, M.A., Rashid, M.I., Ismail, I.M.I.: Optimizing the process of food waste compost and valorizing its applications: a case study of Saudi Arabia. J. Clean. Prod. 176, 426–438 (2018).  https://doi.org/10.1016/j.jclepro.2017.12.165 CrossRefGoogle Scholar
  42. 42.
    Diaz, L.F., Savage, G.M.: Chap. 4 Factors that affect the process. In: L.F. Diaz, M.d.B.W.B., Stentiford, E. (eds.) Waste Management Series, vol. 8. pp. 49–65. Elsevier, New York (2007)Google Scholar
  43. 43.
    Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., Shen, Y.: Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Biores. Technol. 112, 171–178 (2012).  https://doi.org/10.1016/j.biortech.2012.02.099 CrossRefGoogle Scholar
  44. 44.
    Nigussie, A., Bruun, S., Kuyper, T.W., de Neergaard, A.: Delayed addition of nitrogen-rich substrates during composting of municipal waste: effects on nitrogen loss, greenhouse gas emissions and compost stability. Chemosphere. 166, 352–362 (2017).  https://doi.org/10.1016/j.chemosphere.2016.09.123 CrossRefGoogle Scholar
  45. 45.
    Kalemelawa, F., Nishihara, E., Endo, T., Ahmad, Z., Yeasmin, R., Tenywa, M.M., Yamamoto, S.: An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Biores. Technol. 126, 375–382 (2012).  https://doi.org/10.1016/j.biortech.2012.04.030 CrossRefGoogle Scholar
  46. 46.
    Waqas, M., Nizami, A.S., Aburiazaiza, A.S., Barakat, M.A., Ismail, I.M.I., Rashid, M.I.: Optimization of food waste compost with the use of biochar. J. Environ. Manag. 216, 70–81 (2018).  https://doi.org/10.1016/j.jenvman.2017.06.015 CrossRefGoogle Scholar
  47. 47.
    Raj, D., Antil, R.: Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 102(3), 2868–2873 (2011)CrossRefGoogle Scholar
  48. 48.
    Bueno, P., Tapias, R., López, F., Díaz, M.J.: Optimizing composting parameters for nitrogen conservation in composting. Biores. Technol. 99(11), 5069–5077 (2008).  https://doi.org/10.1016/j.biortech.2007.08.087 CrossRefGoogle Scholar
  49. 49.
    Soobhany, N.: Assessing the physicochemical properties and quality parameters during composting of different organic constituents of Municipal Solid Waste. J. Environ. Chem. Eng. 6(2), 1979–1988 (2018).  https://doi.org/10.1016/j.jece.2018.02.049 CrossRefGoogle Scholar
  50. 50.
    Huang, G.F., Wong, J.W.C., Wu, Q.T., Nagar, B.B.: Effect of C/N on composting of pig manure with sawdust. Waste Manag. 24(8), 805–813 (2004).  https://doi.org/10.1016/j.wasman.2004.03.011 CrossRefGoogle Scholar
  51. 51.
    Wei, Y., Zhao, Y., Xi, B., Wei, Z., Li, X., Cao, Z.: Changes in phosphorus fractions during organic wastes composting from different sources. Bioresour. Technol. 189, 349–356 (2015)CrossRefGoogle Scholar
  52. 52.
    Parkinson, R., Gibbs, P., Burchett, S., Misselbrook, T.: Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Biores. Technol. 91(2), 171–178 (2004).  https://doi.org/10.1016/S0960-8524(03)00174-3 CrossRefGoogle Scholar
  53. 53.
    Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T., Kyriacou, A.: Quality assessment of composts in the Greek market: the need for standards and quality assurance. J. Environ. Manag. 80(1), 58–65 (2006).  https://doi.org/10.1016/j.jenvman.2005.08.011 CrossRefGoogle Scholar
  54. 54.
    Lü, F., Shao, L.-M., Zhang, H., Fu, W.-D., Feng, S.-J., Zhan, L.-T., Chen, Y.-M., He, P.-J.: Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: a minireview. Biores. Technol. 248, 122–133 (2018).  https://doi.org/10.1016/j.biortech.2017.06.045 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jonathan Soto-Paz
    • 1
  • Edgar Ricardo Oviedo-Ocaña
    • 2
  • Pablo Cesar Manyoma
    • 3
  • Luis Fernando Marmolejo-Rebellón
    • 1
  • Patricia Torres-Lozada
    • 1
  • Raquel Barrena
    • 4
  • Antoni Sánchez
    • 4
  • Dimitrios Komilis
    • 5
    Email author
  1. 1.Grupo de Estudio y Control de la Contaminación Ambiental (ECCA), Escuela de Recursos Naturales y del Ambiente (EIDENAR), Facultad de ingenieríaUniversidad del ValleCaliColombia
  2. 2.Grupo de investigación Recursos Hídricos y Saneamiento Ambiental (GPH), Escuela de Ingeniería CivilUniversidad Industrial de SantanderBucaramangaColombia
  3. 3.Grupo de Logística y Producción (LogyPro), Escuela de Ingeniería Industrial y Estadística, Facultad de ingenieríaUniversidad del ValleCaliColombia
  4. 4.Dept. of Chemical, Biological and Environmental EngineeringAutonomous University of BarcelonaBellaterraSpain
  5. 5.Dept. of Environmental EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations