Conversion of Cow Manure Pyrolytic Tar Under FCC Conditions Over Modified Equilibrium Catalysts

  • Melisa Bertero
  • Juan Rafael García
  • Marisa Falco
  • Ulises SedranEmail author
Original Paper


Changes were produced by means of alkaline lixiviation in the porosity of an equilibrium commercial FCC catalyst formulated to maximize the yield of middle distillates, in order to improve its performance in the conversion of tar from the pyrolysis of cow manure into hydrocarbons. The pyrolysis was produced at 650 °C in a fixed bed reactor and the tar was catalytically upgraded, comparing the performances of the parent and modified catalysts under realistic FCC conditions, in a CREC Riser Simulator reactor at 550 °C during 10 s, catalyst to reactant relationships being 3, 5 and 8. The alkaline treatment increased both acidity and average mesopore size of the commercial catalyst, thus favoring the diffusion process of the bulkiest oxygenated molecules in tar. The modified catalyst was more effective in deoxygenating tar (conversions up to 87.5% and deoxygenation up to 74.6%), producing more hydrocarbons and coke than the parent catalyst. According to the chemical nature of the pyrolitic tar from cow manure, a high proportion of paraffins derived from the primary cracking of its components were observed among the product hydrocarbons in the gasoline range over both catalysts.


Cow manure Tar Hydrocarbons Equilibrium FCC catalyst Alkaline lixiviation 



This work was performed with the financial assistance of University of Litoral (Santa Fe, Argentina), Secretary of Science and Technology, Proj. CAI + D 50420150100068 and CONICET, PIP 593/13.


  1. 1.
    Brigdwater, A.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)CrossRefGoogle Scholar
  2. 2.
    Uasuf, J., Hilbert, J.: El uso de la biomasa de origen forestal con destino a bioenergía en la Argentina. Informes Técnicos Bioenergía (2012)Google Scholar
  3. 3.
    Cámara Argentina de Feedlot. (2017). Accessed July 2017
  4. 4.
    Cantrell, K.B., Ro, K., Mahajan, D., Anjom, M., Hunt, P.G.: Role of thermochemical conversion in livestock waste-to-energy treatments: obstacles and opportunities. Ind. Eng. Chem. Res. 46, 8918–8927 (2007)CrossRefGoogle Scholar
  5. 5.
    Bertero, M., García, J.R., Sedran, U.: Thermochemical processes aimed at the energy valorization of cow manure from feedlots. Chapter 17. In: Hosseini, M. (ed.) Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts. New Technologies, Challenges and Opportunities (First Edition), in Press, ISBN: 9780128179376. Elsevier, Amsterdam (2019)Google Scholar
  6. 6.
    Al-Sabawi, M., Chen, J., Ng, S.: Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: a review. Energy Fuels 26, 5355–5372 (2012)CrossRefGoogle Scholar
  7. 7.
    de Rezende Pinho, A., de Almeida, M.B.B., Leal Mendes, F., Casavechia, L.C., Talmadge, M.S., Kinchin, C.M., Chum, H.L.: Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel 188, 462–473 (2017)CrossRefGoogle Scholar
  8. 8.
    García, J.R., Bertero, M., Falco, M., Sedran, U.: Catalytic cracking of bio-oils improved by the formation of mesoporesby means of Y zeolite desilication. Appl. Catal. A 503, 1–8 (2015)CrossRefGoogle Scholar
  9. 9.
    Harding, R.H., Peters, A.W., Nee, J.R.D.: New developments in FCC catalyst technology. Appl. Catal. A 221, 389–396 (2001)CrossRefGoogle Scholar
  10. 10.
    Spretz, R., Sedran, U.: Operation of FCC with mixtures of regenerated and deactivated catalyst. Appl. Catal. A 215, 199–209 (2001)CrossRefGoogle Scholar
  11. 11.
    Payá, J., Monzó, J., Borrachero, M.: Fluid catalytic cracking catalyst residue (FCCR) an excellent mineral by-product for improving early strength development of cement mixtures. Cem. Concr. Res. 29, 1773–1779 (1999)CrossRefGoogle Scholar
  12. 12.
    Albemarle FCC Manual 5.4: The role of catalyst in FCC troubleshooting. (2017). Accessed Nov 2017
  13. 13.
    García-Martinez, C., Verboekend, D., Pérez-Ramírez, J., Corma, A.: Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. Catal. Sci. Technol. 3, 972–981 (2013)CrossRefGoogle Scholar
  14. 14.
    Bertero, M., García, J.R., Falco, M., Sedran, U.: Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis. Renew. Energy 132, 11–18 (2019)CrossRefGoogle Scholar
  15. 15.
    Foster, J., Jae, J., Cheng, Y.T., Huber, G.W., Lobo, R.F.: Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl. Catal. A 423, 154–161 (2012)CrossRefGoogle Scholar
  16. 16.
    de Jong, K., Zečević, J., Friedrich, H., de Jongh, P., Bulut, M., van Donk, S., Kenmogne, R., Finiels, A., Hulea, V., Fajula, F.: Angew. Chem. Int. Ed. 49, 10074–10078 (2010)CrossRefGoogle Scholar
  17. 17.
    Bertero, M., Sedran, U.: Immediate catalytic upgrading of soybean shell bio-oil. Energy 94, 171–179 (2016)CrossRefGoogle Scholar
  18. 18.
    Bertero, M., García, J.R., Falco, M., Sedran, U.: Hydrocarbons from bio-oils: performance of the matrix in FCC catalysts in the immediate catalytic upgrading of different raw bio-oils. Waste Biomass Valoriz. 8, 933–948 (2017)CrossRefGoogle Scholar
  19. 19.
    de Lasa, H.I.: US Patent 5,102,628 (1992)Google Scholar
  20. 20.
    Bertero, M., de la Puente, G., Sedran, U.: Fuels from bio-oils: bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 95, 263–271 (2012)CrossRefGoogle Scholar
  21. 21.
    Wang, K., Brown, R.C., Homsy, S., Martinez, L., Sidhu, S.S.: Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresour. Technol. 127, 494–499 (2013)CrossRefGoogle Scholar
  22. 22.
    Mohan, D., Pittman, C.U. Jr., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006)CrossRefGoogle Scholar
  23. 23.
    Peralta, J., Williams, R.C., Rover, M., Silva, H.M.R.: Transportation research circular EC165, alternative binders for sustainable asphalt pavements. 91st. Annual Meeting of the Transportation Research Board, Washington, 22 Jan 2012Google Scholar
  24. 24.
    de la Puente, G., Sedran, U.: Evaluation of hydrogen transfer in FCC catalysts. A new approach for cyclohexene as a test reactant. Chem. Eng. Sci. 55, 759–765 (2000)CrossRefGoogle Scholar
  25. 25.
    Adjaye, J., Bakhshi, N.: Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: comparative catalyst performance and reaction pathways. Fuel Process. Technol. 45, 185–202 (1995)CrossRefGoogle Scholar
  26. 26.
    Bertero, M., Sedran, U.: Chap. 13: Co-processing of bio-oil in fluid catalytic cracking. In: Pandey, A., Bhaskar, T., Stocker, M. (eds.) Recent Advances in Thermo-chemical Conversion of Biomass, pp. 355–381. Elsevier, Amsterdam (2015)CrossRefGoogle Scholar
  27. 27.
    Sedran, U.: Laboratory testing of FCC catalysts and hydrogen transfer properties evaluation. Catal. Rev. Sci. Eng. 36, 405–431 (1994)CrossRefGoogle Scholar
  28. 28.
    Sadeghbeigi, R.: Chemistry of FCC reactions (Chap. 6, pp 125–135). In: Sadeghbeigi, R. (ed.) Fluid Catalytic Cracking Handbook, An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units, 3rd ed., Elsevier, Butterworth-Heinemann (2012)Google Scholar
  29. 29.
    Fogassy, G., Thegarid, N., Toussaint, G., van Veen, A., Schuurman, Y., Mirodatos, C.: Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Appl. Catal. B 96, 476–485 (2010)CrossRefGoogle Scholar
  30. 30.
    Doronin, V., Potapenko, O., Lipin, P., Sorokina, T.: Catalytic cracking of vegetable oils and vacuum gas oil. Fuel 106, 757–765 (2013)CrossRefGoogle Scholar
  31. 31.
    To, A., Resasco, D.: Hydride transfer between a phenolic surface pool and reactant paraffins in the catalytic cracking of m-cresol/hexanes mixtures over an HY zeolite. J. Catal. 329, 57–68 (2015)CrossRefGoogle Scholar
  32. 32.
    Scherzer, J., Octane-enhancing, zeolitic, FCC catalysts: scientific and technical aspects. Catal. Rev. Sci. Eng. 31, 215–354 (1989)CrossRefGoogle Scholar
  33. 33.
    Wojciechowski, B., Corma, A.: Catalytic Cracking. Catalysts, Chemistry, and Kinetics. Marcel Dekker, New York (1986)Google Scholar
  34. 34.
    Bertero, M., Sedran, U.: Upgrading of bio-oils over equilibrium FCC catalysts. Contribution from alcohols, phenols and aromatic ethers. Catal. Today 212, 10–15 (2013)CrossRefGoogle Scholar
  35. 35.
    Bertero, M., de la Puente, G., Sedran, U.: Products and coke from the conversion of bio-oil acids, esters, aldehydes and ketones over equilibrium FCC catalysts. Renew. Energy 60, 349–354 (2013)CrossRefGoogle Scholar
  36. 36.
    Gayubo, G., Aguayo, A.T., Atutxa, A., Aguado, R., Bilbao, J.: Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Ind. Eng. Chem. Res. 43, 2610–2618 (2004)CrossRefGoogle Scholar
  37. 37.
    Gayubo, G., Aguayo, A.T., Atutxa, A., Aguado, R., Olazar, M., Bilbao, J.: Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 Zeolite. II. Aldehydes, ketones, and acids. Ind. Eng. Chem. Res. 43, 2619–2626 (2004)CrossRefGoogle Scholar
  38. 38.
    Passamonti, F., de la Puente, G., Sedran, U.: Comparison between MAT low fixed bed and batch fluidized bed reactors in the evaluation of FCC catalysts. 1. Conversion and yields of the main hydrocarbon groups. Energy Fuels 23, 1358–1363 (2009)CrossRefGoogle Scholar
  39. 39.
    Cerqueira, H., Caeiro, G., Costa, L., Ramôa Ribeiro, F.: Deactivation of FCC catalysts. J. Mol. Catal. A 292, 1–13 (2008)CrossRefGoogle Scholar
  40. 40.
    Hartmann, M.: Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angew. Chem. Int. Ed. (England) 43, 5880–5882 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Melisa Bertero
    • 1
  • Juan Rafael García
    • 1
  • Marisa Falco
    • 1
  • Ulises Sedran
    • 1
    Email author
  1. 1.Instituto de Investigaciones en Catálisis y Petroquímica “Ing. José Miguel Parera” INCAPE (UNL-CONICET)Santa FeArgentina

Personalised recommendations