Advertisement

Biotransformation of Tropical Lignocellulosic Feedstock Using the Brown rot Fungus Serpula lacrymans

  • Irnia NurikaEmail author
  • Sri Suhartini
  • Guy C. Barker
Short Communication
  • 15 Downloads

Abstract

Agricultural residues, especially tropical biomass feedstock are a potentially sustainable source for the production of biorefinery products but these have different characteristic due to their specific lignocellulosic structures. Lignocellulosic pretreatment is a key step for the economic production of value added chemicals as the breakdown of cell walls can increase accessibility to the cellulose, hemicellulose and lignin. Fungi provide natures solution to this problem through their novel enzymes. The brown rot Serpula lacrymans differs from other fungi as it utilises both enzymatic and non enzymatic Fenton reaction to generates hydroxyl radical and disrupt the recalcitrant structure of lignocellulose. In this study we compared changes in rice straw, cacao pod, corn cobs, corn leaves and sugarcane bagasse following conversion by this unusual fungus. This study revealed that the highest total soluble phenols (0.140 mg g− 1) was obtained from the extract of rice straw solid state fermentation while corn leaves produced high amount of total reducing sugars (207.37 mg g− 1), both of which were reached at 21 days cultured. The results of scanning electronic microscopy test emphasised the distinct changed on structural transformation of substrates before and after pretreatment. These finding indicate that the fungus Serpula lacrymans has a particular mode of action which has high potential application in bioconversion of lignocellulosic feedstock.

Keywords

Serpula lacrymans Brown rot Lignocellulose Solid-state fermentation Bioconversion 

Notes

Acknowledgements

This work supported by the grants from Ministry of Research, Technology and Higher Education of the Republic of Indonesia and Improvement Program of University Reputation to World Class University, University of Brawijaya Indonesia. 2017.

References

  1. 1.
    Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I.: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100, 2562–2568 (2009)Google Scholar
  2. 2.
    Goh, C.S., Kok, T.T., Keat, T.L., Subhash, B.: Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour. Technol. 101, 4834–4841 (2010)Google Scholar
  3. 3.
    Kumar, R., Singh, S., Singh, O.V.: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377–391 (2008)Google Scholar
  4. 4.
    Zheng, Y., Jia, Z., Fuqing, X., Yebo, L.: Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 42, 35–53 (2014)Google Scholar
  5. 5.
    Erikson, K.-E.L., Bermek H.: Lignin, lignocellulose, ligninase. Appl. Microbiol. 373–384 (2009). https://pdfs.semanticscholar.org/63b1/ab7fab11f7583260dc280b89e9b0f03ef804.pdf
  6. 6.
    Kahar, P. Synergistic effects of pretreatment process on enzymatic digestion of rice straw for efficient ethanol fermentation. In: Petre, M. (ed.) Environmental biotechnology, pp. 65–87 (2013).  https://doi.org/10.5772/54949 Google Scholar
  7. 7.
    Daud, Z., Kassim, A.S.M., Aripin, A.M., Awang, H., Hatta, M.Z.M.: Chemical composition and morphological of cocoa pod husk and cassava peels for pulp and paper production. Aust. J. Basic Appl. Sci. 7, 406–411 (2013)Google Scholar
  8. 8.
    Hasyierah, M.S.N., Zulkali, M.M.D., Syahidah, K.I.K.. Ferulic acid from lignocellulosic biomass: review. In: Prosiding Hal 1. Malaysia: Pelis Ultra Brasmana. (2008)Google Scholar
  9. 9.
    Stanmore, B.R.: Generation of energy from sugarcane bagasse by thermal treatment. J Waste Biomass Valoriz 1, 77–89 (2010)Google Scholar
  10. 10.
    Gu, F., Linfeng, Y., Yongcan, J., Qiang, H., Hou-min, C., Hasan, J., Richard, P.: Green liquor pretreatment for improving enzymatic hydrolysis of corn stover. Bioresour. Technol. 124, 299–305 (2012)Google Scholar
  11. 11.
    Hatakka, A.: Lignin modifying enzymes from selected white rot fungi-production and role in lignin degradation. FEMS Microbiol. Rev. 13, 125–135 (1994)Google Scholar
  12. 12.
    Singh, D., Chen, S.: The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl. Microbiol. Biotechnol. 81, 399–417 (2008)Google Scholar
  13. 13.
    Dai, Y., Si, M., Chen, Y., Zhang, N., Zhou, M., Liao, Q., Shi, D., Liu, Y.: Combination of biological pretreatment with NaOH/urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Biosour. Technol. 198, 725–731 (2015)Google Scholar
  14. 14.
    Sindhu, R., Parameswaran, B., Ashok, P.: Biological pretreatment of lignocellulosic biomass—an overview. Bioresour. Technol. 199, 76–82 (2016)Google Scholar
  15. 15.
    Bilal, M., Muhammad, A., Roberto, P.S., Hongbu, H., Wei, W., Xuehong, Z., Hafiz, M.N.I.: Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants—a review. Sci. Total Environ. 576, 646–659 (2017)Google Scholar
  16. 16.
    Bugg, T.D.H., Mark, A., Elizabeth, M.. Hardiman, Rahman, R.: Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28, 1883–1896 (2011)Google Scholar
  17. 17.
    Vares, T., Kalsi, M., Hatakka, A.: Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid state fermentation of wheat straw. Appl. Environ. Microbiol. 61, 3515–3520 (1995)Google Scholar
  18. 18.
    Rabemanolontsoa, H., Shiro, S.: Various pretreatment of lignocellulosic. Bioresour. Technol. 199, 83–91 (2016)Google Scholar
  19. 19.
    Xu, X., Zhiqi, X., Song, S., Mengmeng, L.: Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation. Bioresour. Technol. 241, 415–423 (2017)Google Scholar
  20. 20.
    Asgher, M., Amna, I., Muhammad, B.: Lignocellulose degrading enzyme production by Pleurotus sapidus WC 529 and its application in lignin degradation. Turk. J. Biochem. 41(1), 26–36 (2016)Google Scholar
  21. 21.
    Kuhad, R.C., Singh, A., Eriksson, K.E.L.: Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 57, 45–125. (1997)Google Scholar
  22. 22.
    Goodell, B., Nicholas, D.D., Schult, T.P. Introduction to wood deterioration and preservation. In: Goodell, B., Nicholas, D. D., Schultz, T. P. (eds.) Wood deterioration and preservation: advances in our changing world, pp. 2–7. Washington, DC, American Chemical Society (2003)Google Scholar
  23. 23.
    Hatakka, A., Biopolymer: Biology, Chemistry, Biotechnology Application. In: Hofrichter, M., Steinbuchel, A. (eds.) Lignin, humic substance and coal, pp. 129–180. Wiley-VCH, Weinheim (2001)Google Scholar
  24. 24.
    Hastrup, A.C.S., Jensen, B., Clausen, C., Green, F.: The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi. Holzforschung 60, 339–345 (2006)Google Scholar
  25. 25.
    Watkinson, S.C., Daniel, C.E.: Serpula lacrymans, wood and buildings. Adv. Appl. Microbiol. 78, 121–149 (2012)Google Scholar
  26. 26.
    Eastwood, D.C., Floudas, D., Binder, M., Majcherczyk, A., Schneider, P., Aerts, A., Asiegbu, F.O., Baker, S.E., Barry, K., Bendiksby, M., Blumentritt, M., Coutinho, P.M., Cullen, D., de Vries, R.P., Gathman, A., Goodell, B., Henrissat, B., Ihrmark, K., Kauserud, H., Kohler, A., LaButti, K., Lapidus, A., Lavin, J.L., Lee, Y.H., Lindquist, E., Lilly, W., Lucas, S., Morin, E., Murat, C., Oguiza, J.A., Park, J., Pisabarro, A.G., Riley, R., Rosling, A., Salamov, A., Schmidt, O., Schmutz, J., Skrede, I., Stenlid, J., Wiebenga, A., Xie, X., Kuees, U., Hibbett, D.S., Hoffmeister, D., Hogberg, N., Martin, F., Grigoriev, I.V., Watkinson, S. C. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science. 333, 762–765. (2011)Google Scholar
  27. 27.
    Asgher, M., Ahmad, N., Iqbal, H.N.M.: Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bioethanol production. Ind. Crop Prod. 44, 488–495 (2013)Google Scholar
  28. 28.
    Asgher, M., Bashir, F., Iqbal, H.M.N.: A comprehensive ligninolytic pretreatment approach from lignocellulose green biotechnology to produce bioethanol. Chem. Eng. Res. Des. 92, 1571–1578 (2013)Google Scholar
  29. 29.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. J. Anal. Chem. 31, 300–310 (1959)Google Scholar
  30. 30.
    Singleton, V.L., Rossi, J.A.J.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144–158 (1965)Google Scholar
  31. 31.
    Aguiar, A., Gavioli, D., Ferraz, A.: Extracellular Activities and Wood Component Losses during Pinus taeda Biodegradation by The Brown-Rot Fungus Gloeophyllum trabeum. Int. Biodeterior. Biodegrad. 82, 187–191 (2013)Google Scholar
  32. 32.
    Zabihi, M., Asl, A.H., Ahmadpour, A.: Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. J. Hazard. Mater. 174, 251–256 (2010)Google Scholar
  33. 33.
    Nanayakkara, S., Antonio, F.P., Kei, S.: Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products. Green Chem. 16, 1897–1903 (2014)Google Scholar
  34. 34.
    Mahyati, A.R.P., Muh, N.D., Paulina, T.: Biodegradation of lignin from corn cob by using a mixture of Phanerochaete Chrysosporium, Lentinus Edodes, and Pleurotus Ostreatus. Int. J. Sci. Technol. Res. 2(11): 79–82 (2013)Google Scholar
  35. 35.
    Taniguchi, M., Hiroyuki, S., Daisuke, W., Kenji, S., Kazuhiro, H., Takaaki, T.: Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J. Biosci. Bioeng. 100(6), 637–643 (2005)Google Scholar
  36. 36.
    Wan, C., Li, Y.: Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour. Technol. 102, 7507–7512 (2011)Google Scholar
  37. 37.
    Sharma-Shivappa, M.: Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33, 88–96 (2009)Google Scholar
  38. 38.
    Asgher, M., Abdul, W., Muhammad, B., Hafiz, M.N.I.: Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid state fermentation. Biocatal. Agric. Technol. 6, 195–201 (2016)Google Scholar
  39. 39.
    Asgher, M., Ijaz, A., Bilal, M.: Lignocellulose degrading enzyme production by Pleurotus sapidus WC 529 and its application in lignin degradation. Turk. J. Biochem. 41, 26–36 (2016)Google Scholar
  40. 40.
    Conde-Mejia, C., Jimenez-Gutierrez, A., El-Halwagi, M.A.: Comparison of pretreatment methods for bioethanol production from lignocellulosic material. Process Saf. Environ. Prot. 90, 189–202 (2012)Google Scholar
  41. 41.
    Dewilda, Y., Afrianita, R., dan Iman, F.F.. Degradasi Senyawa Fenol oleh Mikroorganisme Laut. Jurnal Teknik Lingkungan UNAND. 9:59–73. (2012)Google Scholar
  42. 42.
    Diorio, L., Galati, B., Amela Garcia, M., Papinutti, L.: Degradation of pruning wastes by Phanerochaete sordida growing in SSF: ultrastructural, chemical, and enzymatic studies. Int. Biodeterior. Biodegrad. 63, 19–23 (2009)Google Scholar
  43. 43.
    Vaithanomsat, P., Cuichulcherm, S., Apiwatanipat, W. Bioethanol production from enzymatically saccharified sunflower stalk using steam explosion as pretreatment. In: Word Academy of Science, Engineering and Technology, vol. 49, pp. 140–143. (2009)Google Scholar
  44. 44.
    Sun, Y., Cheng, J.J.: Dilute acid pretreatment of rye straw and bermuda grass for ethanol production. Bioresour. Technol. 96, 1599–1606 (2005)Google Scholar
  45. 45.
    Jahromi, M.F., Liang, J.B., Rosfarizan, M., Goh, Y.M., Shokryazdan, P., Ho, Y.W.: Efficiency of rice straw lignocelluloses degradability by Aspergillus terreus ATCC 74135 in solid state fermentation. Afr. J. Biotechnol. 10, 4428–4434 (2011)Google Scholar
  46. 46.
    Thanapimmetha, A., Vuttibunchon, K., Titapiwatanakun, B., Srinophakun, P.: Optimization of solid state fermentation for reducing sugar production from agricultural residues of sweet sorghum by Trichoderma harzianum. Chiang Mai J. Sci. 39 (2), 270–280 (2011)Google Scholar
  47. 47.
    Hibbett, D.S., Donoghue, M.J.: Analysis of character correlations among wood decay mechanism, mating systems dan substrate range in homobasidiomycetes. Syst. Biol. 50, 215–242 (2001)Google Scholar
  48. 48.
    Umasaravanan, D., Jayapriya, J., Rajendran, R.B.: Comparison of lignocellulose biodegradation in solid state fermentation of sugarcane bagasse and rice straw by Aspergillus tamarii. J. Biosci. 40, 65–68 (2011)Google Scholar
  49. 49.
    Daroda, J., Almendros, G., Camarero, S., Martinez, A.T., Vares, T., Hattaka, A.: Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enz. Microb. Technol. 25, 605–612 (1999)Google Scholar
  50. 50.
    Antai, S.P., Crawford, D.L.: Degradation of extractive-free lignocelluloses by Coriolus versicolor and Poria placenta. Eur. J. Appl. Microbiol. Biotechnol. 14, 165–168 (1982)Google Scholar
  51. 51.
    Zhang, S., Jiang, M., Zhou, Z., Zhao, M., Li, Y.: Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium. International Biodeteration and Biodegradation 75, 89–95 (2012)Google Scholar
  52. 52.
    Madadi, M., Abbas, A.: Lignin degradation by fungal pretreatment: a review. J Plant Pathol. Microbiol. 8(2), 1–6 (2017)Google Scholar
  53. 53.
    Hong, Y., Dashtban, M., Chen, S., Song, R., Wensheng, Q.: Enzyme production and lignin degradation by four basidiomycetous fungi in submerged fermentation of peat containing medium. Int. J. Biol. 4, 172–180 (2012)Google Scholar
  54. 54.
    Kaneko, S., Yoshitake, K., Itakura, S., Tanaka, H., Enoki, A.: Relationship between production of hydroxyl radicals and degradation of wood, crystalline cellulose, and a lignin-related compound or accumulation of oxalic acid in cultures of brown-rot. J. Wood Sci. 51, 262–269 (2005)Google Scholar
  55. 55.
    Hyde, S.M., Wood, P.M.: A mechanism for production of hydroxyl radicals by brown-rot fungus Coniophora puteana: Fe (III) reduction by cellobiose dehydrogenase and Fe (II) oxidation at a distance fro hyphae. Microbiol. J. 143, 259–266 (1997)Google Scholar
  56. 56.
    Espejo, E., Agosin, E.: Production and degradation of oxalic acid by brown rot fungi. Appl. Environ. Microbiol. 57, 1980–1986 (1991)Google Scholar
  57. 57.
    Hastrup, A.C.S., Howell, C., Jensen, B., Ill, F.G.: Non-enzymatic depolymerization of cotton cellulose by fungal mimicking metabolites. Int. Biodeterior. Biodegrad. 65, 553–559 (2011)Google Scholar
  58. 58.
    Munir, E., Yoon, J.J., Tokimatsu, T., Hattori, T., Shimada, M.: New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid. J. Wood Sci. 47, 368–373 (2001)Google Scholar
  59. 59.
    Yoon, J.J., Cha, C.J., Kim, Y.S., Son, D.W., Kim, Y.K.: The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J. Microbiol. Biotechnol. 17, 800–805 (2007)Google Scholar
  60. 60.
    Ritschkoff, A.C., Ratto, M., Buchert, J., Viikari, L.: Effect of carbon source on the production of oxalic acid and hydrogen peroxide by brown rot fungus Poria placenta. J. Biotechnol. 40, 179–186 (1995)Google Scholar
  61. 61.
    Green, F., Larsen, M.J., Winandy, J.E., Highley, T.L.: Role of oxalic acid in incipient brown rot decay. Material Und Organismen 26, 191–213 (1991)Google Scholar
  62. 62.
    Gamauf, C., Metz, B., Seiboth, B.: Degradation of plant cell wall polymers by Fungi. In: Kubicek, C., Druzhinina, I. (eds.) Environmental and microbial relationships. The Mycota, vol 4. Springer, Berlin (2007)Google Scholar
  63. 63.
    Phutela, U.G., Sahni, N.: Microscopic structural changes in paddy straw pretreated with Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138. Indian J. Microbiol. 53, 227–231 (2013)Google Scholar
  64. 64.
    Kurniati, A., Darmokoesoemo, H., dan Puspaningsih, N.N.T.: Scanning electron microscope analysis of rice straw degradation by a treatment with αα-l-arabinofuranosidase. Procedia Chem. 18, 63–68 (2016)Google Scholar
  65. 65.
    Wi, S.G., In, S.C., Kyoung, H.K., Ho, M.K., Hyeun-Jong, B.: Bioethanol production from rice straw by popping pretreatment. Biotechnol. Biofuels 6, 166 (2013)Google Scholar
  66. 66.
    Wi, S.G., Byung, Y.C., Yoon, G.L., Duck, J.Y., Hyeun-Jong, B.: Enhanced enzymatic hydrolysis of rapeseed straw by popping pretreatment for bioethanol production. Bioresour. Technol. 102, 5788–5793 (2011)Google Scholar
  67. 67.
    Rambat, N.H., Aprilita, dan Rusdiarso, B.: Aplikasi Limbah Kulit Buah Kakao sebagai Media Fermentasi Asam Laktat untuk Bahan Baku Bioplastik. J. Kimia Kemasan 37, 103–110 (2015)Google Scholar
  68. 68.
    Wanitwattanarumlug, B.A., Luengnaruemitchai, Wongkasemjit, S.: Characterization of Corn Cobs from Microwave and Potassium Hydroxide Pretreatment. Int. J. Chem. Mol. Nucl. Mate. Metall. Eng. 6, 327–331 (2012)Google Scholar
  69. 69.
    Sharif, A., Aziz, N.S.M., Ismail, N.I., Abdullah, N.: Corn cobs as a potential feedstock for slow pyrolysis of biomass. J. Phys. Sci. 27, 123–137 (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Agroindustrial Technology, Faculty of Agricultural TechnologyUniversitas BrawijayaMalangIndonesia
  2. 2.School of Life SciencesUniversity of WarwickCoventryUK

Personalised recommendations