Effects of Alkali Activation and CO2 Curing on the Hydraulic Reactivity and Carbon Storage Capacity of BOF Slag in View of Its Use in Concrete

  • M. Morone
  • Ö. Cizer
  • G. Costa
  • R. BaciocchiEmail author
Original Paper


This work investigates the sequential application of alkali activation and CO2 curing to BOF steel slag as a technique for improving its hydraulic reactivity for use in concrete, while also exploiting its potential as a carbon sink. Activation with either a sodium hydroxide/sodium-silicate or a sodium hydroxide/sodium carbonate solution was first evaluated in a preliminary calorimetric study for selecting the solution compositions leading to the formation of early stage hydration products. The pastes produced with the selected solutions were then cured either in a humidity chamber or in a carbonation chamber (at 20 or 50 °C) for up to 28 days, in order to assess long term reaction products. Mineralogical and thermal analysis showed the formation of a C–S–H like phase, specifically in the samples activated by the sodium hydroxide/sodium-silicate solution, whereas significant occurrence of gaylussite was noticed in the samples activated with the sodium hydroxide/sodium carbonate solution. A maximum CO2 uptake of 6% by wt, due to calcium carbonate formation, was observed in the latter samples, whereas a 5% value was achieved in the former ones. The compressive strength of the mortars prepared with sodium hydroxide/sodium silicate and cured in the carbonation chamber at 50 °C was above 2 MPa, while it was lower for the other samples, particularly those activated with sodium hydroxide/sodium carbonate. Alkali activation employing sodium hydroxide/sodium silicate solutions followed by CO2 curing at relatively high temperature (i.e. 50 °C) resulted a promising treatment for BOF slag valorization in the manufacturing of concrete for non structural applications.


BOF steel slag Alkali activation Curing CO2 uptake Compressive strength Hydraulic reactivity 



  1. 1.
    Proctor, D.M., Fehling, K.A., Shay, E.C., Wittenborn, J.L., Green, J.J., Avent, C., Bigham, R.D., Connolly, M., Lee, B., Shepker, T.O., Zak, M.A.: Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ. Sci. Technol. 34, 1576–1582 (2000)CrossRefGoogle Scholar
  2. 2.
    Euroslag Statistics: Accessed July 2018
  3. 3.
    Bohmer, S., Moser, G., Neubauer, C., Peltoniemi, M., Schachermayer, E., Tesar, M., Walter, B., Winter, B.: Aggregate Case Study, Final Report (2008)Google Scholar
  4. 4.
    Mahieux, P.Y., Aubert, J.E., Escadeillas, G.: Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Constr. Build. Mater. 23, 742–747 (2009)CrossRefGoogle Scholar
  5. 5.
    Xue, Y., Wu, S., Hou, H., Zha, J.: Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J. Hazard. Mater. 138, 261–268 (2006)CrossRefGoogle Scholar
  6. 6.
    Shen, D.H., Wu, C.M., Du, J.C.: Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Constr. Build. Mater. 23, 453–461 (2009)CrossRefGoogle Scholar
  7. 7.
    Reddy, A.S., Pradhan, R.K., Chandra, S.: Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder. Int. J. Miner. Process. 79, 98–105 (2006)CrossRefGoogle Scholar
  8. 8.
    Yildirim, I.Z., Prezzi, M.: Chemical, mineralogical, and morphological properties of steel slag. Adv. Civil Eng. (2011)Google Scholar
  9. 9.
    Motz, H., Geiseler, J.: Products of steel slags an opportunity to save natural resources. Waste Manag. 21, 285–293 (2001)CrossRefGoogle Scholar
  10. 10.
    Shi, C.: Characteristics and cementitious properties of ladle slag fines from steel production. Cem. Concr. Res. 32, 459–462 (2002)CrossRefGoogle Scholar
  11. 11.
    Belhadj, E., Diliberto, C., Lecomte, A.: Characterization and activation of basic oxygen furnace slag. Cem. Concr. Compos. 34, 34–40 (2012)CrossRefGoogle Scholar
  12. 12.
    Belhadj, E., Diliberto, C., Lecomte, A.: Properties of hydraulic paste of basic oxygen furnace slag. Cem. Concr. Compos. 45, 15–21 (2014)CrossRefGoogle Scholar
  13. 13.
    Shi, C., Jiménez, A.F., Palomo, A.: New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem. Concr. Res. 41, 750–763 (2011)CrossRefGoogle Scholar
  14. 14.
    Rashad, A.M.: Comprehensive overview about the influence of different additives on the properties of alkali-activated slag—a guide for civil engineer. Constr. Build. Mater. 47, 29–55 (2013)CrossRefGoogle Scholar
  15. 15.
    Provis, J.L., Palomo, A., Shi, C.: Advances in understanding alkali-activated materials. Cem. Concr. Res. 78, 110–125 (2015)CrossRefGoogle Scholar
  16. 16.
    Mehta, P.K.: Durability of concrete-fifty years of progress? ACI Special Publication 126 (1991)Google Scholar
  17. 17.
    Myers, R.J., Bernal, S.A., San Nicolas, R., Provis, J.L.: Generalized structural description of calcium–sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29, 5294–5306 (2013)CrossRefGoogle Scholar
  18. 18.
    Wang, S.D., Scrivener, K.L., Pratt, P.L.: Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 24, 1033–1043 (1994)CrossRefGoogle Scholar
  19. 19.
    Burciaga-Díaz, O., Escalante-García, J.I.: Structure, mechanisms of reaction and strength of an alkali-activated blast-furnace slag. J. Am. Ceram. Soc. 96, 3939–3948 (2013)CrossRefGoogle Scholar
  20. 20.
    Fernández-Jiménez, A., Palomo, J.G., Puertas, F.: Alkali-activated slag mortars: mechanical strength behaviour. Cem. Concr. Res. 29, 1313–1321 (1999)CrossRefGoogle Scholar
  21. 21.
    Živica, V.: Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr. Build. Mater. 21, 1463–1469 (2007)CrossRefGoogle Scholar
  22. 22.
    Salman, M., Cizer, Ö, Pontikes, Y., Vandewalle, L., Blanpain, B., Van Balen, K.: Effect of curing temperatures on the alkali activation of crystalline continuous casting stainless steel slag. Constr. Build. Mater. 71, 308–316 (2014)CrossRefGoogle Scholar
  23. 23.
    Salman, M., Cizer, Ö, Pontikes, Y., Snellings, R., Vandewalle, L., Blanpain, B., Van Balen, K.: Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions. J. Hazard. Mater. 286, 211–219 (2015)CrossRefGoogle Scholar
  24. 24.
    Criado, M., Fernández-Jiménez, A., Palomo, A.: Alkali activation of fly ash. Part III: effect of curing conditions on reaction and its graphical description. Fuel 89, 3185–3192 (2010)CrossRefGoogle Scholar
  25. 25.
    Krizan, D., Zivanovic, B.: Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cem. Concr. Res. 32, 1181–1188 (2002)CrossRefGoogle Scholar
  26. 26.
    Shi, C., He, F., Wu, Y.: Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures. Constr. Build. Mater. 26, 257–267 (2012)CrossRefGoogle Scholar
  27. 27.
    Zhan, B., Poon, C., Shi, C.: CO2 curing for improving the properties of concrete blocks containing recycled aggregates. Cem. Concr. Compos. 42, 1–8 (2013)CrossRefGoogle Scholar
  28. 28.
    Baciocchi, R., Costa, G., Di Gianfilippo, M., Polettini, A., Pomi, R., Stramazzo, A.: Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. J. Hazard. Mater. 283, 302–313 (2015)CrossRefGoogle Scholar
  29. 29.
    Allahverdi, A., Kani, E.N., Esmaeilpoor, S.: Effects of silica modulus and alkali concentration on activation of blast-furnace slag. Iran. J. Mater. Sci. Eng. 5, 32–35 (2008)Google Scholar
  30. 30.
    Knapen, E., Cizer, O., Van Balen, K., Van Gemert, D.: Effect of free water removal from early-age hydrated cement pastes on thermal analysis. Constr. Build. Mater. 23, 3431–3438 (2009)CrossRefGoogle Scholar
  31. 31.
    Fernández-Jiménez, A., Puertas, F., Arteaga, A.: Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data. J. Therm. Anal. Calorim. 52, 945–955 (1998)CrossRefGoogle Scholar
  32. 32.
    Shi, C., Day, R.L.: A calorimetric study of early hydration of alkali-slag cements. Cem. Concr. Res. 25, 1333–1346 (1995)CrossRefGoogle Scholar
  33. 33.
    Garcia-Lodeiro, I., Fernandez-Jimenez, A., Palomo, A.: Hydration kinetics in hybrid binders: early reaction stages. Cem. Concr. Compos. 39, 82–92 (2013)CrossRefGoogle Scholar
  34. 34.
    Fernández-Jiménez, A., Puertas, F.: Alkali-activated slag cements: kinetic studies. Cem. Concr. Res. 27, 359–368 (1997)CrossRefGoogle Scholar
  35. 35.
    Altan, E., Erdoğan, S.T.: Alkali activation of a slag at ambient and elevated temperatures. Cem. Concr. Compos. 34, 131–139 (2012)CrossRefGoogle Scholar
  36. 36.
    Wang, Q., Yan, P.: Hydration properties of basic oxygen furnace steel slag. Constr. Build. Mater. 24, 1134–1140 (2010)CrossRefGoogle Scholar
  37. 37.
    Wang, Q., Yan, P., Han, S.: The influence of steel slag on the hydration of cement during the hydration process of complex binder. Sci. China Technol. Sci. 54, 388–394 (2011)CrossRefGoogle Scholar
  38. 38.
    Taylor, H.F.: Cement chemistry. Thomas Telford, London (1997)CrossRefGoogle Scholar
  39. 39.
    Johnson, D.R., Robb, W.A.: Gaylussite: thermal properties by simultaneous thermal analysis. Am. Mineral. 58, 778–784 (1973)Google Scholar
  40. 40.
    Bernal, S.A., Provis, J.L., Walkley, B., San Nicolas, R., Gehman, J.D., Brice, D.G., Kilcullen, A.R., Duxson, P., van Deventer, J.S.: Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 53, 127–144 (2013)CrossRefGoogle Scholar
  41. 41.
    Ke, X., Bernal, S.A., Provis, J.L.: Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cem. Concr. Res. 81, 24–37 (2016)CrossRefGoogle Scholar
  42. 42.
    Humad, A.M., Provis, J.L., Cwirzen, A.: Alkali activation of a high MgO GGBS—fresh and hardened properties. Mag. Concr. Res. 70, 1256–1264 (2018)CrossRefGoogle Scholar
  43. 43.
    Huijgen, W.J., Witkamp, G.J., Comans, R.N.: Mineral CO2 sequestration by steel slag carbonation. Environ. Sci. Technol. 39, 9676–9682 (2005)CrossRefGoogle Scholar
  44. 44.
    Liu, L., Ha, J., Hashida, T., Teramura, S.: Development of a CO2 solidification method for recycling autoclaved lightweight concrete waste. J. Mater. Sci. Lett. 20, 1791–1794 (2001)CrossRefGoogle Scholar
  45. 45.
    Puertas, F., Torres-Carrasco, M.: Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterization. Cem. Concr. Res. 57, 95–104 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science EngineeringUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Department of Civil EngineeringKU LeuvenHeverleeBelgium

Personalised recommendations