Advertisement

Methane Production from the Co-digestion of Algal Biomass with Crude Glycerol by Anaerobic Mixed Cultures

  • Sureewan Sittijunda
  • Alissara ReungsangEmail author
Original Paper
  • 33 Downloads

Abstract

The optimization of factors affecting methane production from the co-digestion of algal biomass with crude glycerol was investigated using response surface methodology with a central composite design. The investigated parameters included algal biomass, crude glycerol and inoculum concentration. The inoculum and algal biomass concentration had a significant individual effect on the methane production (p ≤ 0.05). The interactive effect on methane production was found to be between algal biomass and crude glycerol (p ≤ 0.05). The optimal conditions were 20.02 g-VS/L of crude glycerol, 9.76 g-VS/L of inoculum concentration and 5.50 g-VS/L of algal biomass. Under optimum conditions, the maximum methane production of 58.88 mL-CH4/L was obtained. The difference between the observed methane production (58.88 mL-CH4/L) and the predicted methane (68.94 mL-CH4/L) was 14.59%. Under the optimum conditions, the energy production of 92.47 J/g-VSadded was obtained. The polymerase chain reaction-denaturing gradient gel electrophoresis analysis indicated that the methane producers present in the fermentation broth were Methanosarcina sp., Methanoregula sp., Methanospirillum sp. and Methanoculleus sp.

Keywords

Microalgae Biodiesel waste Anaerobic digestion Biogas 

Notes

Acknowledgements

This research project is supported by Mahidol University. The authors would like to thank the Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University for the facilities support and partially financial support from TRF Senior Research Scholar (Grant No. RTA5980004). Technical assistant by Napapat Sitthikitpanya is very much appreciated.

Author Contributions

AR and SS conceived and designed the experiments. SS performed the experiment, analyzed the data and wrote the manuscript. This experiment was supervised by AR. All authors read and approved the manuscript.

References

  1. 1.
    Johansson, B.: Security aspects of future renewable energy systems–a short overview. Energy. 61, 598–605 (2013).  https://doi.org/10.1016/j.energy.2013.09.023 CrossRefGoogle Scholar
  2. 2.
    Assawamongkholsiri, T., Reungsang, A., Plangkang, P., Sittijunda, S.: Repeated batch fermentation for photo-hydrogen and lipid production from wastewater of a sugar manufacturing plant. Int. J. Hydrog. Energy. 43(7), 3605–3617 (2018).  https://doi.org/10.1016/j.ijhydene.2017.12.119 CrossRefGoogle Scholar
  3. 3.
    Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14(2), 578–597 (2010).  https://doi.org/10.1016/j.rser.2009.10.003 CrossRefGoogle Scholar
  4. 4.
    Fairley, P.: Introduction: next generation biofuels. Nature 474, S2 (2011). https://doi.org/10.1038/474S02a CrossRefGoogle Scholar
  5. 5.
    Lakatos, G., Balogh, D., Farkas, A., Ördög, V., Nagy, P.T., Bíró, T., Maróti, G.: Factors influencing algal photobiohydrogen production in algal bacterial co-cultures. Algal Res. 28, 161–171 (2017).  https://doi.org/10.1016/j.algal.2017.10.024 CrossRefGoogle Scholar
  6. 6.
    Raheem, A., Prinsen, P., Vuppaladadiyam, A.K., Zhao, M., Luque, R.: A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J. Clean. Prod. 181, 42–59 (2018).  https://doi.org/10.1016/j.jclepro.2018.01.125 CrossRefGoogle Scholar
  7. 7.
    Reungsang, A., Pattra, S., Sittijunda, S.: Optimization of key factors affecting methane production from acidic effluent coming from the sugarcane juice hydrogen fermentation process. Energies 5(11), 4746 (2012)CrossRefGoogle Scholar
  8. 8.
    Ward, A.J., Lewis, D.M., Green, F.B.: Anaerobic digestion of algae biomass: a review. Algal Res. 5, 204–214 (2014).  https://doi.org/10.1016/j.algal.2014.02.001 CrossRefGoogle Scholar
  9. 9.
    Tuesorn, S., Wongwilaiwalin, S., Champreda, V., Leethochawalit, M., Nopharatana, A., Techkarnjanaruk, S., Chaiprasert, P.: Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Biores. Technol. 144, 579–586 (2013).  https://doi.org/10.1016/j.biortech.2013.07.013 CrossRefGoogle Scholar
  10. 10.
    Prapinagsorn, W., Sittijunda, S., Reungsang, A.: Co-digestion of napier grass and its silage with cow dung for methane production. Energies 10(10), 1654 (2017)CrossRefGoogle Scholar
  11. 11.
    Teixeira Franco, R., Buffière, P., Bayard, R.:Cattle manure for biogas production. Does ensiling and wheat straw addition enhance preservation of biomass and methane potential? Biofuels (2017).  https://doi.org/10.1080/17597269.2017.1387751 CrossRefGoogle Scholar
  12. 12.
    Zamanzadeh, M., Hagen, L.H., Svensson, K., Linjordet, R., Horn, S.J.: Biogas production from food waste via co-digestion and digestion effects on performance and microbial ecology. Sci. Rep. 7(1), 17664 (2017).  https://doi.org/10.1038/s41598-017-15784-w CrossRefGoogle Scholar
  13. 13.
    He, S., Fan, X., Katukuri, N.R., Yuan, X., Wang, F., Guo, R.-B.: Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Biores. Technol. 204, 145–151 (2016).  https://doi.org/10.1016/j.biortech.2015.12.073 CrossRefGoogle Scholar
  14. 14.
    Mahdy, A., Ballesteros, M., González-Fernández, C.: Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Biores. Technol. 199, 319–325 (2016).  https://doi.org/10.1016/j.biortech.2015.08.080 CrossRefGoogle Scholar
  15. 15.
    Gruber-Brunhumer, M.R., Jerney, J., Zohar, E., Nussbaumer, M., Hieger, C., Bochmann, G., Schagerl, M., Obbard, J.P., Fuchs, W., Drosg, B.: Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: influence of different storage and pretreatment methods on biogas yield. Algal Res. 12, 230–238 (2015).  https://doi.org/10.1016/j.algal.2015.08.022 CrossRefGoogle Scholar
  16. 16.
    Passos, F., Uggetti, E., Carrère, H., Ferrer, I.: Pretreatment of microalgae to improve biogas production: a review. Biores. Technol. 172, 403–412 (2014).  https://doi.org/10.1016/j.biortech.2014.08.114 CrossRefGoogle Scholar
  17. 17.
    Balussou, D., Kleyböcker, A., McKenna, R., Möst, D., Fichtner, W.: An economic analysis of three operational co-digestion biogas plants in Germany. Waste Biomass Valoriz. 3(1), 23–41 (2012).  https://doi.org/10.1007/s12649-011-9094-2 CrossRefGoogle Scholar
  18. 18.
    Yen, H.-W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Biores. Technol. 98(1), 130–134 (2007).  https://doi.org/10.1016/j.biortech.2005.11.010 CrossRefGoogle Scholar
  19. 19.
    Rétfalvi, T., Szabó, P., Hájos, A.-T., Albert, L., Kovács, A., Milics, G., Neményi, M., Lakatos, E., Ördög, V.: Effect of co-substrate feeding on methane yield of anaerobic digestion of Chlorella vulgaris. J. Appl. Phycol. 28(5), 2741–2752 (2016).  https://doi.org/10.1007/s10811-016-0796-5 CrossRefGoogle Scholar
  20. 20.
    Nielsen, H.B., Uellendahl, H., Ahring, B.K.: Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenergy 31(11), 820–830 (2007).  https://doi.org/10.1016/j.biombioe.2007.04.004 CrossRefGoogle Scholar
  21. 21.
    Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F., Wang, Y.: Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag. 33(12), 2653–2658 (2013).  https://doi.org/10.1016/j.wasman.2013.05.014 CrossRefGoogle Scholar
  22. 22.
    Phanduang, O., Lunprom, S., Salakkam, A., Reungsang, A.: Anaerobic solid-state fermentation of bio-hydrogen from microalgal Chlorella sp. biomass. Int. J. Hydrog. Energy. 42(15), 9650–9659 (2017).  https://doi.org/10.1016/j.ijhydene.2017.01.084 CrossRefGoogle Scholar
  23. 23.
    Owen, W.F., Stuckey, D.C., Healy, J.B. Jr., Young, L.Y., McCarty, P.L.: Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13(6), 485–492 (1979).  https://doi.org/10.1016/0043-1354(79)90043-5 CrossRefGoogle Scholar
  24. 24.
    Saraphirom, P., Reungsang, A.: Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int. J. Hydrog. Energy. 35(24), 13435–13444 (2010).  https://doi.org/10.1016/j.ijhydene.2009.11.122 CrossRefGoogle Scholar
  25. 25.
    Zheng, Y., Tang, X., He, D., Xu, L.: Investigation on pseudorandom properties of FCSR sequence. In: 2005 International Conference on Communications, Circuits and Systems Proceedings 2005, pp. 66–70Google Scholar
  26. 26.
    Kongjan, P., O-Thong, S., Angelidaki, I.: Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Biores. Technol. 102(5), 4028–4035 (2011).  https://doi.org/10.1016/j.biortech.2010.12.009 CrossRefGoogle Scholar
  27. 27.
    Nielfa, A., Cano, R., Fdz-Polanco, M.: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 5, 14–21 (2015).  https://doi.org/10.1016/j.btre.2014.10.005 CrossRefGoogle Scholar
  28. 28.
    Reungsang, A., Sittijunda, S., Sreela-or, C.: Methane production from acidic effluent discharged after the hydrogen fermentation of sugarcane juice using batch fermentation and UASB reactor. Renew. Energy. 86, 1224–1231 (2016).  https://doi.org/10.1016/j.renene.2015.09.051 CrossRefGoogle Scholar
  29. 29.
    Pott, R.W.M., Howe, C.J., Dennis, J.S.: The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Biores. Technol. 152, 464–470 (2014).  https://doi.org/10.1016/j.biortech.2013.10.094 CrossRefGoogle Scholar
  30. 30.
    Sittijunda, S., Reungsang, A.: Fermentation of hydrogen, 1,3-propanediol and ethanol from glycerol as affected by organic loading rate using up-flow anaerobic sludge blanket (UASB) reactor. Int. J. Hydrog. Energy. 42(45), 27558–27569 (2017).  https://doi.org/10.1016/j.ijhydene.2017.05.149 CrossRefGoogle Scholar
  31. 31.
    Venkataramanan, K.P., Venkataramanan, K.P., Boatman, J.J., Kurniawan, Y., Taconi, K.A., Bothun, G.D., Scholz, C.: Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl. Microbiol. Biotechnol. 93(3), 1325–1335 (2012).  https://doi.org/10.1007/s00253-011-3766-5 CrossRefGoogle Scholar
  32. 32.
    Ingram, L.O.: Adaptation of membrane lipids to alcohols. J. Bacteriol. 125(2), 670–678 (1976)Google Scholar
  33. 33.
    Kameswari, K.S.B., Kalyanaraman, C., Porselvam, S., Thanasekaran, K.: Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Technol. Environ. Policy. 14(2), 241–250 (2012).  https://doi.org/10.1007/s10098-011-0391-z CrossRefGoogle Scholar
  34. 34.
    Hobbs, S.R., Landis, A.E., Rittmann, B.E., Young, M.N., Parameswaran, P.: Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Manag. 71, 612–617 (2018).  https://doi.org/10.1016/j.wasman.2017.06.029 CrossRefGoogle Scholar
  35. 35.
    Sittijunda, S., Reungsang, A.: Media optimization for biohydrogen production from waste glycerol by anaerobic thermophilic mixed cultures. Int. J. Hydrog. Energy. 37(20), 15473–15482 (2012).  https://doi.org/10.1016/j.ijhydene.2012.02.185 CrossRefGoogle Scholar
  36. 36.
    Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H., Cheng, C.L., Lee, D.J., Bai, F.W., Chang, J.S.: Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78, 1–10 (2013).  https://doi.org/10.1016/j.bej.2013.03.006 CrossRefGoogle Scholar
  37. 37.
    Himanshu, H., Murphy, J.D., Grant, J., O’Kiely, P.: Antagonistic effects on biogas and methane output when co-digesting cattle and pig slurries with grass silage in in vitro batch anaerobic digestion. Biomass Bioenergy 109, 190–198 (2018).  https://doi.org/10.1016/j.biombioe.2017.12.027 CrossRefGoogle Scholar
  38. 38.
    Yan, J.: Handbook of Clean Energy Systems. Wiley, Hoboken (2015)CrossRefGoogle Scholar
  39. 39.
    Bayer, B., Vojvoda, J., Offre, P., Alves, R.J.E., Elisabeth, N.H., Garcia, J.A.L., Volland, J.M., Srivastava, A., Schleper, C., Herndl, G.J.: Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 10, 1051 (2015). https://doi.org/10.1038/ismej.2015.200 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Environment and Resource StudiesMahidol UniversityNakhon PathomThailand
  2. 2.Department of Biotechnology, Faculty of TechnologyKhon Kaen UniversityKhon KaenThailand
  3. 3.Research Group for Development of Microbial Hydrogen Production Process from BiomassKhon Kaen UniversityKhon KaenThailand

Personalised recommendations