Biofabrication of Gold Nanoparticles Using Xylanases Through Valorization of Corncob by Aspergillus niger and Trichoderma longibrachiatum: Antimicrobial, Antioxidant, Anticoagulant and Thrombolytic Activities

  • J. A. Elegbede
  • A. LateefEmail author
  • M. A. Azeez
  • T. B. Asafa
  • T. A. Yekeen
  • I. C. Oladipo
  • D. A. Aina
  • L. S. Beukes
  • E. B. Gueguim-Kana
Original Paper


The involvement of enzymes in green nanotechnology is rapidly developing and has continued to blossom in recent times. The present study examines the use of fungal xylanases from Aspergillus niger L3 (NEA) and Trichoderma longibrachiatum L2 (TEA) to biosynthesize gold nanoparticles (AuNPs) for biomedical applications. AuNPs were synthesized with indication of colour change from light yellow to purple, and surface plasmon resonance at 545 and 560 nm were obtained for NEA-AuNPs and TEA-AuNPs respectively. The Fourier-transform infrared spectroscopy indicated that protein molecules were responsible for the capping and stabilization of the nanoparticles, which were mainly spherical (NEA-AuNPs) and flower-shaped (TEA-AuNPs). The sizes of the nanoparticles ranged from 4.88 to 123.99 nm, and displayed maximum antibacterial activity of 44.3% at 100 µg/ml, and antifungal activity of 87% at 150 µg/ml. While the AuNPs scavenged DPPH by 53.79%, hydrogen peroxide was scavenged by 96%. The biosynthesized AuNPs showed excellent anticoagulant and thrombolytic activities on human blood. This study demonstrated the potential use of xylanases to synthesize AuNPs, which to the best our knowledge, is the first report of such. The biosynthesized nanoparticles displayed activities making it predisposed for potential use as excellent biomedical agents.


Corncob Aspergillus Trichoderma Xylanase Biofabrication Gold nanoparticles Biomedical applications 



  1. 1.
    Fariq, A., Khan, T., Yasmin, A.: Microbial synthesis of nanoparticles and their potential applications in biomedicine. J. Appl. Biomed. 15, 241–248 (2017)CrossRefGoogle Scholar
  2. 2.
    Abdelghany, A.M., Abdelrazek, E.M., Badr, S.I., Morsi, M.A.: Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: materials for electrochemical and optical applications. Mater. Des. 97, 532–543 (2016)CrossRefGoogle Scholar
  3. 3.
    Abdelghany, A.M., Abdelrazek, E.M., Badr, S.I., Abdel-Aziz, M.S., Morsi, M.A.: Effect of gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract. J. Saudi Chem. Soc. 21, 528–537 (2017)CrossRefGoogle Scholar
  4. 4.
    Morsi, M.A., Abdelghany, A.M.: UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater. Chem. Phys. 201, 100–112 (2017)CrossRefGoogle Scholar
  5. 5.
    Abdelrazek, E.M., Abdelghany, A.M., Badr, S.I., Morsi, M.A.: 2017. Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. CrossRefGoogle Scholar
  6. 6.
    Vasantharaj, S., Sripriya, N., Shanmugavel, M., Manikandan, E., Gnanamani, A., Senthilkumar, P.: Surface active gold nanoparticles biosynthesis by new approach for bionanocatalytic activity. J. Photochem. Photobiol. B 179, 119–125 (2018)CrossRefGoogle Scholar
  7. 7.
    Sathiyavimal, S., Vasantharaj, S., Bharathi, D., Saravanan, M., Manikandan, E., Kumar, S.S., Pugazhendhi, A.: Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of gram negative and gram positive bacteria. J. Photochem. Photobiol. B 188, 126–134 (2018)CrossRefGoogle Scholar
  8. 8.
    Bharathi, D., Josebin, M.D., Vasantharaj, S., Bhuvaneshwari, V.: Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J. Nanostruct. Chem. 8, 83–92 (2018)CrossRefGoogle Scholar
  9. 9.
    Adelere, I.A., Lateef, A.: A novel approach to the green synthesis of metallicnanoparticles: the use of agro-wastes, enzymes and pigments. Nanotechnol. Rev. 5, 567–587 (2016)CrossRefGoogle Scholar
  10. 10.
    Lateef, A., Ojo, S.A., Elegbede, J.A.: The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol. Rev. 5, 601–622 (2016)Google Scholar
  11. 11.
    Lateef, A., Ojo, S.A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Gueguim-Kana, E.B., Beukes, L.S.: Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl. Nanosci. 6, 863–874 (2016)CrossRefGoogle Scholar
  12. 12.
    Lateef, A., Akande, M.A., Ojo, S.A., Folarin, B.I., Gueguim-Kana, E.B., Beukes, L.S.: Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. 3 Biotech 6, 140 (2016)CrossRefGoogle Scholar
  13. 13.
    Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Ajetomobi, F.E., Gueguim-Kana, E.B., Beukes, L.S.: Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoScience 5, 196–205 (2015)CrossRefGoogle Scholar
  14. 14.
    Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Azeez, L., Ajibade, S.E., Ojo, S.A., Gueguim-Kana, E.B., Beukes, L.S.: Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial, antioxidant activities and application as a paint additive. J. Taibah Univ. Sci. 10, 551–562 (2016)CrossRefGoogle Scholar
  15. 15.
    Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Azeez, L., Ojo, S.A., Gueguim-Kana, E.B., Beukes, L.S.: Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J. Nanostruct. Chem. 6, 159–169 (2016)CrossRefGoogle Scholar
  16. 16.
    Azeez, M.A., Lateef, A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Gueguim-Kana, E.B., Beukes, L.S.: Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. J. Clust. Sci. 28, 149–164 (2017)CrossRefGoogle Scholar
  17. 17.
    Lateef, A., Akande, M.A., Azeez, M.A., Ojo, S.A., Folarin, B.I., Gueguim-Kana, E.B., Beukes, L.S.: Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (Synsepalum dulcificum) for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. Nanotechnol. Rev. 5, 507–520 (2016)Google Scholar
  18. 18.
    Lateef, A., Ojo, S.A., Akinwale, A.S., Azeez, L., Gueguim-Kana, E.B., Beukes, L.S.: Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biologia 70, 1295–1306 (2015)Google Scholar
  19. 19.
    Lateef, A., Ojo, S.A., Oladejo, S.M.: Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochem. 51, 1406–1412 (2016)CrossRefGoogle Scholar
  20. 20.
    Oladipo, I.C., Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Akinwale, A.S., Gueguim-Kana, E.B., Beukes, L.S.: Green synthesis and antimicrobial activities of silver nanoparticles using cell-free extracts of Enterococcus species. Not. Sci. Biol. 9, 196–203 (2017)CrossRefGoogle Scholar
  21. 21.
    Ahmad, T., Wani, I.A., Manzoor, N., Ahmed, J., Asiri, A.M.: Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf. B Biointerface 107, 227–234 (2013)CrossRefGoogle Scholar
  22. 22.
    Anand, K., Gengan, R.M., Phulukdaree, A., Chuturgoon, A.: Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J. Ind. Eng. Chem. 21, 1105–1111 (2015)CrossRefGoogle Scholar
  23. 23.
    Bogireddy, N.K.R., Anand, K.K.H., Mandal, B.K.: Gold nanoparticles-synthesis by Sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes. J. Mol. Liquids 211, 868–875 (2015)CrossRefGoogle Scholar
  24. 24.
    Das, S., Dhar, B.B.: Green synthesis of noble metal nanoparticles using cysteine-modified silk fibroin: catalysis and antibacterial activity. RSC Adv. 4, 46285–46292 (2014)CrossRefGoogle Scholar
  25. 25.
    Devi, P.S., Banerjee, S., Chowdhury, S.R., Kumar, G.S.: Eggshell membrane: a natural biotemplate to synthesize fluorescent gold nanoparticles. RSC Adv. 2, 11578–11585 (2012)CrossRefGoogle Scholar
  26. 26.
    Dorosti, N., Jamshidi, F.: Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: synthesis, characterization, and evaluation of anticancer and antibacterial activity. J. Appl. Biomed. 14, 235–245 (2016)CrossRefGoogle Scholar
  27. 27.
    Fazal, S., Jayasree, A., Sasidharan, S., Koyakutty, M., Nair, S.V., Menon, D.: Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl. Mater. 6, 8080–8089 (2014)CrossRefGoogle Scholar
  28. 28.
    Kim, H.S., Jun, S.H., Koo, Y.K., Cho, S., Park, Y.: Green synthesis and nanotopography of heparin-reduced gold nanoparticles with enhanced anticoagulant activity. J. Nanosci. Nanotechnol. 13, 2068–2076 (2013)CrossRefGoogle Scholar
  29. 29.
    Kim, H.K., Choi, M.J., Cha, S.H., Koo, Y.K., Jun, S.H., Cho, S., Park, Y.: Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin. Nanoscale Res. Lett. 8, 542 (2013)CrossRefGoogle Scholar
  30. 30.
    Ojo, S.A., Lateef, A., Azeez, M.A., Oladejo, S.M., Akinwale, A.S., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Gueguim-Kana, E.B., Beukes, L.S.: Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans. Nanobiosci. 15, 433–442 (2016)CrossRefGoogle Scholar
  31. 31.
    Oladipo, I.C., Lateef, A., Elegbede, J.A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Gueguim-Kana, E.B., Beukes, L.S., Oluyide, T.O., Atanda, O.R.: Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications. J. Photochem. Photobiol. B 173, 250–257 (2017)CrossRefGoogle Scholar
  32. 32.
    Jayaseelan, C., Ramkumar, R., Rahuman, A.A., Perumal, P.: Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crops Prod. 45, 423–429 (2013)CrossRefGoogle Scholar
  33. 33.
    Zheng, B., Qian, L., Yuan, H., Xiao, D., Yang, X., Paau, M.C., Choi, M.M.: Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82, 177–183 (2010)CrossRefGoogle Scholar
  34. 34.
    Durán, M., Silveira, C.P., Durán, N.: Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review. IET Nanobiotechnol. 9, 314–323 (2015)CrossRefGoogle Scholar
  35. 35.
    Mishra, A., Sardar, M.: Alpha-amylase mediated synthesis of silver nanoparticles. Sci. Adv. Mater. 4, 143–146 (2012)CrossRefGoogle Scholar
  36. 36.
    Moshfegh, M., Forootanfar, H., Zare, B., Shahverdi, A.R., Zarrini, G., Faramarzi, M.A.: Biological synthesis of Au, Ag and Au-Ag bimetallic nanoparticles by α-amylase. Dig. J. Nanomater. Biostruct. 6, 1419–1426 (2011)Google Scholar
  37. 37.
    Rangnekar, A., Sarma, T.K., Singh, A.K., Deka, J., Ramesh, A., Chattopadhyay, A.: Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir 23, 5700–5706 (2007)CrossRefGoogle Scholar
  38. 38.
    Johnson, J.M., Kinsinger, N., Sun, C., Li, D., Kisailus, D.: Urease mediated room-temperature synthesis of nanocrystalline titanium dioxide. J. Am. Chem. Soc. 134, 13974–13977 (2012)CrossRefGoogle Scholar
  39. 39.
    Faramarzi, M.A., Forootanfar, H.: Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf. B Biointerface 87, 23–27 (2011)CrossRefGoogle Scholar
  40. 40.
    Durán, N., Cuevas, R., Cordi, L., Rubilar, O., Diez, M.C.: Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. SpringerPlus 3, 645 (2014)CrossRefGoogle Scholar
  41. 41.
    Lateef, A., Adeeyo, A.O.: Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes. Not. Sci. Biol. 7, 405–411 (2015)CrossRefGoogle Scholar
  42. 42.
    Lateef, A., Adelere, I.A., Gueguim-Kana, E.B., Asafa, T.B., Beukes, L.S.: Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 5, 29–35 (2015)CrossRefGoogle Scholar
  43. 43.
    Rai, T., Panda, D.: An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol. Chem. Phys. Lett. 623, 108–112 (2015)CrossRefGoogle Scholar
  44. 44.
    Talekar, S., Joshi, G., Chougle, R., Nainegali, B., Desai, S., Joshi, A., Kambale, S., Kamat, P., Haripurkar, R., Jadhav, S., Nadar, S.: Preparation of stable cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase and its use for silver nanoparticle synthesis from silver nitrate. Catal. Commun. 53, 62–66 (2014)CrossRefGoogle Scholar
  45. 45.
    Khan, S., Rizvi, S.M.D., Avaish, M., Arshad, M., Bagga, P., Khan, M.S.: A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Mater. Lett. 159, 373–376 (2015)CrossRefGoogle Scholar
  46. 46.
    Elegbede, J.A., Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Oladipo, I.C., Adebayo, E.A., Beukes, L.S., Gueguim-Kana, E.B.: Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol. 12, 857–863 (2018)CrossRefGoogle Scholar
  47. 47.
    Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S.: Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338 (2001)CrossRefGoogle Scholar
  48. 48.
    Elegbede, J.A., Lateef, A.: Valorization of corn-cob by fungal isolates for production of xylanase in submerged and solid state fermentation media and potential biotechnological applications. Waste Biomass Valor. 9, 1273–1287 (2018)CrossRefGoogle Scholar
  49. 49.
    Lateef, A., Ojo, M.O.: Public health issues in the processing of Cassava (Manihot esculenta) for production ‘Lafun’ and the application of hazard analysis control measures. Qual. Assur. Saf. Crops Foods 8, 165–177 (2016)CrossRefGoogle Scholar
  50. 50.
    Prasannaraj, G., Venkatachalam, P.: Enhanced antibacterial, anti-biofilm and antioxidant (ROS) activities of biomolecules engineered silver nanoparticles against clinically isolated gram positive and gram negative microbial pathogens. J. Clust. Sci. 28, 645–664 (2017)CrossRefGoogle Scholar
  51. 51.
    Khatami, M., Pourseyedi, S., Khatami, M., Hamidi, H., Zaeifi, M., Soltani, L.: Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour. Bioprocess 2, 19 (2015)CrossRefGoogle Scholar
  52. 52.
    Lateef, A., Oloke, J.K., Gueguim Kana, E.B., Oyeniyi, S.O., Onifade, O.R., Oyeleye, A.O., Oladosu, O.C., Oyelami, A.O.: Improving the quality of agro-wastes by solid-state fermentation: enhanced antioxidant activities and nutritional qualities. World J. Microbiol. Biotechnol. 24, 2369–2374 (2008)CrossRefGoogle Scholar
  53. 53.
    Olajire, A.A., Azeez, L.: Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables. Afr. J. Food Sci. Technol. 2, 022–029 (2011)Google Scholar
  54. 54.
    Bhakya, S., Muthukrishnan, S., Sukumaran, M., Muthukumar, M.: Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 6, 755–766 (2016)CrossRefGoogle Scholar
  55. 55.
    Lateef, A., Ojo, S.A., Elegbede, J.A., Azeez, M.A., Yekeen, T.A., Akinboro, A.: Evaluation of some biosynthesized silver nanoparticles for biomedical applications: hydrogen peroxide scavenging, anticoagulant and thrombolytic activities. J. Clust. Sci. 28, 1379–1392 (2017)CrossRefGoogle Scholar
  56. 56.
    Harish, B.S., Uppuluri, K.B., Anbazhagan, V.: Synthesis of fibrinolytic active nanoparticles using wheat bran xylan as a reducing and stabilizing agent. Carbohydr. Polymer 132, 104–110 (2015)CrossRefGoogle Scholar
  57. 57.
    Malathi, S., Ezhilarasu, T., Abiraman, T., Balasubramanian, S.: One pot green synthesis of Ag, Au and Au-Ag alloy nanoparticles using isonicotinic acid hydrazide and starch. Carbohydr. Polym. 111, 734–743 (2014)CrossRefGoogle Scholar
  58. 58.
    Ramakrishna, M., Babu, D.R., Gengan, R.M., Chandra, S., Rao, G.N.: Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J. Nanostruct. Chem. 6, 1–13 (2016)CrossRefGoogle Scholar
  59. 59.
    Shankar, S., Jaiswal, L., Aparna, R.S.L., Prasad, R.G.S.V.: Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 137, 75–78 (2014)CrossRefGoogle Scholar
  60. 60.
    Boca, S., Rugina, D., Pintea, A., Barbu-Tudoran, L., Astilean, S.: Flowershaped gold nanoparticles: synthesis, characterization and their application as SERS-active tags inside living cells. Nanotechnology 22, 055702 (2011)CrossRefGoogle Scholar
  61. 61.
    Priyadarshini, E., Pradhan, N., Sukla, L.B., Panda, P.K., Mishra, B.K.: Biogenic synthesis of floral-shaped gold nanoparticles using a novel strain Talaromyces flavus. Ann. Microbiol. 64, 1055–1063 (2014)CrossRefGoogle Scholar
  62. 62.
    Singh, P., Kim, Y.J., Wang, C., Mathiyalagan, R., Yang, D.C.: Microbial synthesis of flower-shaped gold nanoparticles. Artif. Cell Nanomed. Biotechnol. 44, 1469–1474 (2015)Google Scholar
  63. 63.
    Sultana, S., Djaker, N., Boca-Farcau, S., Salerno, M., Charnaux, N., Astilean, S., Hlawaty, H., de La Chapelle, M.L.: Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells. Nanotechnology 26, 055101 (2015)CrossRefGoogle Scholar
  64. 64.
    Wani, I.A., Ahmad, T.: Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf. B Biointerface 101, 162–170 (2013)CrossRefGoogle Scholar
  65. 65.
    Gulcin, I., Elmastas, M., Aboul-Enein, H.Y.: Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytother. Res. 21, 354–361 (2007)CrossRefGoogle Scholar
  66. 66.
    Chang, H.F., Yang, L.L.: Radical-scavenging and rat liver mitochondria lipid peroxidative inhibitory effects of natural flavonoids from traditional medicinal herbs. J. Med. Plants Res. 6, 997–1006 (2012)Google Scholar
  67. 67.
    Singh, P., Kim, Y.J., Yang, D.C.: A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif. Cells Nanomed. Biotechnol. 44, 1949–1957 (2015)CrossRefGoogle Scholar
  68. 68.
    Lateef, A., Ojo, S.A., Folarin, B.I., Gueguim-Kana, E.B., Beukes, L.S.: Kolanut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J. Clust. Sci. 27, 1561–1577 (2016)CrossRefGoogle Scholar
  69. 69.
    Esmon, C.T., Xu, J., Lupu, F.: Innate immunity and coagulation. J. Thromb. Haemost. 9, 182–188 (2011)CrossRefGoogle Scholar
  70. 70.
    Prandoni, P., Falanga, A., Piccioli, A.: Cancer, thrombosis and heparin-induced thrombocytopenia. Thromb. Res. 120, S137–S140 (2007)CrossRefGoogle Scholar
  71. 71.
    Silva, A.K.A., Letourneur, D., Chauvierre, C.: Polysaccharide nanosystems for future progress in cardiovascular pathologies. Theranostics 4, 576–591 (2014)CrossRefGoogle Scholar
  72. 72.
    Ilinskaya, A.N., Dobrovolskaia, M.A.: Nanoparticles and theblood coagulation system. Part I: benefits of nanotechnology. Nanomedicine 8, 773–784 (2013)CrossRefGoogle Scholar
  73. 73.
    Lateef, A., Ojo, S.A., Elegbede, J.A., Akinola, P.O., Akanni, E.O.: Nanomedical applications of nanoparticles for blood coagulation disorders. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds.) Environmental Nanotechnology, vol. 1, pp. 243–277. Springer International Publishing AG, Cham. ISBN 978-3-319-76089-6. (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • J. A. Elegbede
    • 1
    • 2
  • A. Lateef
    • 1
    • 2
    • 3
    Email author return OK on get
  • M. A. Azeez
    • 2
    • 3
  • T. B. Asafa
    • 3
    • 4
  • T. A. Yekeen
    • 2
    • 3
  • I. C. Oladipo
    • 3
    • 5
  • D. A. Aina
    • 6
  • L. S. Beukes
    • 7
  • E. B. Gueguim-Kana
    • 8
  1. 1.Laboratory of Industrial Microbiology and NanobiotechnologyLadoke Akintola University of TechnologyOgbomosoNigeria
  2. 2.Department of Pure and Applied Biology, Faculty of Pure and Applied SciencesLadoke Akintola University of TechnologyOgbomosoNigeria
  3. 3.Nanotechnology Research Group (NANO+)Ladoke Akintola University of TechnologyOgbomosoNigeria
  4. 4.Department of Mechanical Engineering, Faculty of Engineering and TechnologyLadoke Akintola University of TechnologyOgbomosoNigeria
  5. 5.Department of Science Laboratory Technology, Faculty of Pure and Applied SciencesLadoke Akintola University of TechnologyOgbomosoNigeria
  6. 6.Department of Microbiology, School of Science and TechnologyBabcock UniversityIlishan-RemoNigeria
  7. 7.Microscopy and Microanalysis UnitUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
  8. 8.Department of Microbiology, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations