Advertisement

Effect of Anaerobic Digestion Temperature on Sludge Quality

  • Getachew Dagnew GebreeyessusEmail author
Original Paper
  • 19 Downloads

Abstract

Sludge quality in terms of dewaterability, reject water characteristics as well as foaming phenomena is a concern either economically or environmentally. In this work the difference in sludge quality between mesophilic and thermophilic anaerobic digested waste activated sludge is compared using completely stirred tank reactors. For mesophilic sludge, the mean capillary suction time (CST) in seconds, extent of dewaterability (% water removed), ammonia nitrogen (Nammon in mg/l) and the soluble COD (CODsol in mg/l) are 852 ± 180, 62.9 ± 1.7, 1484 ± 153.5, and 2315.7 ± 407.6 respectively. Meanwhile the foaming potential (FP) and foam stability (IS) are 4.4 ± 1.7 and 0.7 ± 0.1. Whereas, the mean CST, extent of dewaterability, Nammon and CODsol are 1109 ± 211, 65 ± 1.8, 1581 ± 120.5, and 4740.6 ± 1122.8 for the thermophilic sludge respectively. With a maximum organic loading rate achieved at 2.82 g-VS/l/d, the CST, Nammon and CODsol concentration as well as the FP are significantly better as sludge quality for the mesophilic sludge.

Graphical Abstract

Keywords

Dewaterability Mesophilic Thermophilic Foaming Reject water Nammon 

Notes

Acknowledgements

I would like to thank my family and friends as well as those others who contributed directly or indirectly to this research work.

References

  1. 1.
    Jiang, J., Wu, J., Poncin, S., Li, H.Z.: Rheological characteristics of highly concentrated anaerobic digested sludge. Biochem. Eng. J. 86(0), 57–61 (2014)CrossRefGoogle Scholar
  2. 2.
    Appels, L., Baeyens, J., Degrève, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34(6), 755–781 (2008)CrossRefGoogle Scholar
  3. 3.
    Lau, S.W., Chong, S.H., Ang, H.M., Sen, T.K., Chua, H.B.: Dewaterability of anaerobic digested sludge with cations and chitosan as dual conditioners. In: Pogaku, R., Bono, A., Chu, C. (eds.) Developments in Sustainable Chemical and Bioprocess Technology, pp. 11–17. Springer, Boston (2013)CrossRefGoogle Scholar
  4. 4.
    Nges, I.A., Liu, J.: Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renew. Energy 35(10), 2200–2206 (2010)CrossRefGoogle Scholar
  5. 5.
    Wang, F., Hidaka, T., Uchida, T., Tsumori, J.: Thermophilic anaerobic digestion of sewage sludge with high solids content. Water Sci. Technol. 69(9), 1949–1955 (2014)CrossRefGoogle Scholar
  6. 6.
    Wang, T., Chen, J., Shen, H., An, D.: Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability. Bioresour. Technol. 217, 265–270 (2016)CrossRefGoogle Scholar
  7. 7.
    An, D., Wang, T., Zhou, Q., Wang, C., Yang, Q., Xu, B., Zhang, Q.: Effects of total solids content on performance of sludge mesophilic anaerobic digestion and dewaterability of digested sludge. Waste Manag. 62, 188–193 (2017)CrossRefGoogle Scholar
  8. 8.
    Verstraete, W., Vlaeminck, S.E.: ZeroWasteWater: short-cycling of wastewater resources for sustainable cities of the future. Int. J. Sustain. Dev. World Ecol. 18(3), 253–264 (2011)CrossRefGoogle Scholar
  9. 9.
    Usack, J.G., Spirito, C.M., Angenent, L.T.: Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation. J. Vis. Exp. 65, 3978 (2012)Google Scholar
  10. 10.
    APHA, WWA, WEF: Standard methods for the examination of water and wastewater. In: Clesceri LS, Greenberg AE, Eaton AD (eds.) Solids, p. 7. Amer Public Health Assn (1999)Google Scholar
  11. 11.
    USEPA: The Determination of Chemical Oxygen Demand by Semi-Automated Colorimetry. In: O’Dell JW (ed.) p. 12. Cincinnati, Ohio (1993)Google Scholar
  12. 12.
    American Public Health Association: A standard methods for the examination of water and wastewater. In: Capillary Suction Time. APHA (1999)Google Scholar
  13. 13.
    Vesilind, P.A.: Capillary suction time as a fundamental measure of sludge dewaterability. J. (Water Pollut. Control Fed.) 60(2), 215–220 (1988)Google Scholar
  14. 14.
    Scholz, M.: Review of recent trends in capillary suction time (CST) dewaterability testing research. Ind. Eng. Chem. Res. 44(22), 8157–8163 (2005)CrossRefGoogle Scholar
  15. 15.
    Peeters, B.: Effect of Activated Sludge Composition on its Dewaterability and Sticky Phase, p. 280. Chemical Engineering, Katholieke Universiteit Leuven, Leuven (2011)Google Scholar
  16. 16.
    Sawalha, O., Scholz, M.: Impact of temperature on sludge dewatering properties assessed by the capillary suction time. Ind. Eng. Chem. Res. 51(6), 2782–2788 (2012)CrossRefGoogle Scholar
  17. 17.
    Fitria, D., Scholz, M., Swift, G.M., Hutchinson, S.M.: Impact of sludge floc size and water composition on dewaterability. Chem. Eng. Technol. 37(3), 471–477 (2014)CrossRefGoogle Scholar
  18. 18.
    Braguglia, C.M., Mininni, G., Rolle, E.: Influence of anaerobic digestion on particle surface charge and optimal polymer dosage. Water Sci. Technol. 54(5), 43–50 (2006)CrossRefGoogle Scholar
  19. 19.
    Zhou, J., Zheng, G., Zhang, X., Zhou, L.: Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching. PLoS ONE 9(7), e102688 (2014)CrossRefGoogle Scholar
  20. 20.
    Braguglia, C.M., Gianico, A., Gallipoli, A., Mininni, G.: The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: role of the organic load. Chem. Eng. J. 270, 362–371 (2015)CrossRefGoogle Scholar
  21. 21.
    Chi, Y.Z., Li, Y.Y., Ji, M., Qiang, H., Deng, H.W., Wu, Y.P.: Mesophilic and thermophilic digestion of thickened waste activated sludge: a comparative study. In: Sun, X.B., Du, Z. (eds.) Advanced Materials Research. Trans Tech Publications, Stafa-Zurich (2010)Google Scholar
  22. 22.
    Amani, T., Nosrati, M., Sreekrishnan, T.: A precise experimental study on key dissimilarities between mesophilic and thermophilic anaerobic digestion of waste activated sludge. Int. J. Environ. Res. 5(2), 333–342 (2011)Google Scholar
  23. 23.
    Zeng, J., Gao, J.-M., Chen, Y.-P., Yan, P., Dong, Y., Shen, Y., Guo, J.-S., Zeng, N., Zhang, P.: Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants. Sci. Rep. 6, 26721–26721 (2016)CrossRefGoogle Scholar
  24. 24.
    Decho, A.W., Gutierrez, T.: Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 8, 922–922 (2017)CrossRefGoogle Scholar
  25. 25.
    Pontoni, L., Papirio, S., D’Alessandro, G., Caniani, D., Gori, R., Mannina, G., Capodici, M., Nicosia, S., Fabbricino, M., Pirozzi, F., Esposito, G.: Dewaterability of CAS and MBR sludge: effect of biological stability and EPS composition. J. Environ. Eng. 144(1):040170881–040170889 (2018)CrossRefGoogle Scholar
  26. 26.
    Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., Cecchi, F.: Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 55(0), 260–265 (2013)CrossRefGoogle Scholar
  27. 27.
    Gebauer, R.: Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production. Bioresour. Technol. 93(2), 155–167 (2004)CrossRefGoogle Scholar
  28. 28.
    Zanetti, L., Frison, N., Nota, E., Tomizioli, M., Bolzonella, D., Fatone, F.: Progress in real-time control applied to biological nitrogen removal from wastewater: a short-review. Desalination 286, 1–7 (2012)CrossRefGoogle Scholar
  29. 29.
    Zhang, L., Zheng, P., Tang, C., Jin, R.: Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters. J. Zhejiang Univ. Sci. B 9(5), 416–426 (2008)CrossRefGoogle Scholar
  30. 30.
    Abbasi, M., Dehghani, M., Moussavi, G., Azhdarpoor, A.: Degradation of organic matter of municipal sewage sludge using ultrasound treatment in Shiraz wastewater treatment plant. Health Scope 4(1), e23507 (2015)CrossRefGoogle Scholar
  31. 31.
    Baudez, J.C., Markis, F., Eshtiaghi, N., Slatter, P.: The rheological behaviour of anaerobic digested sludge. Water Res. 45(17), 5675–5680 (2011)CrossRefGoogle Scholar
  32. 32.
    Ge, H., Jensen, P.D., Batstone, D.J.: Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Res. 45(4), 1597–1606 (2011)CrossRefGoogle Scholar
  33. 33.
    EEC: Urban Wastewater Treatment Directive. In: 91/271/EEC, EEC, Editor (1991)Google Scholar
  34. 34.
    Kougias, P.G., Boe, K., S, O.T., Kristensen, L.A., Angelidaki, I.: Anaerobic digestion foaming in full-scale biogas plants: a survey on causes and solutions. Water Sci. Technol. 69(4), 889–895 (2014)CrossRefGoogle Scholar
  35. 35.
    Ganidi, N., Tyrrel, S., Cartmell, E.: Anaerobic digestion foaming causes—a review. Bioresour. Technol. 100(23), 5546–5554 (2009)CrossRefGoogle Scholar
  36. 36.
    Junker, B.: Foam and its mitigation in fermentation systems. Biotechnol. Prog. 23(4), 767–784 (2008)CrossRefGoogle Scholar
  37. 37.
    Fryer, M., O’Flaherty, E., Gray, N.F.: Evaluating the measurement of activated sludge foam potential. Water 3(1), 424 (2011)CrossRefGoogle Scholar
  38. 38.
    Suhartini, S., Heaven, S., Banks, C.J.: Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control. Bioresour. Technol. 152(0), 202–211 (2014)CrossRefGoogle Scholar
  39. 39.
    Kougias, P.G., Boe, K., Tsapekos, P., Angelidaki, I.: Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresour. Technol. 153, 198–205 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Urban Environmental ManagementKotebe Metropolitan UniversityAddis AbabaEthiopia

Personalised recommendations