Bioethanol Production by Repeated Batch Using Immobilized Yeast Cells on Sugarcane Bagasse

  • Apinya Sowatad
  • Tatsaporn TodhanakasemEmail author
Original Paper


Delignified sugarcane bagasse from the sugar industry was used as a carrier for Saccharomyces cerevisiae SC90 immobilization and ethanol production. The proficiency of cell immobilization of S. cerevisiae SC90 on delignified sugarcane bagasse was determined by the amount of cell retention on the carrier and by scanning electron microscopy (SEM). S. cerevisiae SC90 showed the highest cell immobilization on day 1 when diluted molasses (231 g/L of total sugar) was used as a substrate. The efficiency of ethanol production by the immobilized cells was compared with cells grown in suspension in the repeated batch process. Immobilized cells exhibited a higher ethanol production than the suspended system for all five consecutive batches without any requirement for cell adaptation. The maximum ethanol yield (YP/S) of the immobilized cells was 0.42 ± 0.02 g/g (82.35% theoretical yield) in a 3 L packed bed bioreactor when the production could be prolonged up to five consecutive batches. As an additional bonus, the high protein spent yeast cells mixed with delignified sugarcane bagasse can be explored as an animal feed in the future.


Ethanol Sugarcane bagasse Immobilization Saccharomyces cerevisiae Animal feed supplement 



Briana M. Young is gratefully acknowledged for her proofreading of the manuscript. This research was financially supported by The Thailand Research Fund and KSL Green Innovation Public Company Limited (TRF 60I0004).


  1. 1.
    Bloyd, C.N.: An Update on Ethanol Production and Utilization in Thailand. Pacific Northwest National Laboratory (PNNL), Richland (2009)Google Scholar
  2. 2.
    Hamamci, H., Ryu, D.D.Y.: Performance of tapered column packed-bed bioreactor for ethanol production. Biotechnol. Bioeng. 29(8), 994–1002 (1987)Google Scholar
  3. 3.
    Luong, J.H.T.: Cell immobilization in K-carrageenan for ethanol production. Biotechnol. Bioeng. 27(12), 1652–1661 (1985)Google Scholar
  4. 4.
    Shindo, S., Takata, S., Taguchi, H., Yoshimura, N.: Development of novel carrier using natural zeolite and continuous ethanol fermentation with immobilized Saccharomyces cerevisiae in a bioreactor. Biotechnol. Lett. 23, 24 (2001)Google Scholar
  5. 5.
    Gross, R., Hauer, B., Otto, K., Schmid, A.: Microbial biofilms: new catalysts for maximizing productivity of long term biotransformations. Biotechnol. Bioeng. 98(6), 1123–1134 (2007)Google Scholar
  6. 6.
    Rosche, B., Li, X.Z., Hauer, B., Schmid, A., Buehler, K.: Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol. 27(11), 636–643 (2009)Google Scholar
  7. 7.
    Winn, M., Foulkes, J.M., Perni, S., Simmons, M.J.H., Overton, T.W., Goss, R.J.M.: Biofilms and their engineered counterparts: a new generation of immobilised biocatalysts. Catal. Sci. Technol. 2(8), 1544–1547 (2012)Google Scholar
  8. 8.
    Li, X.Z., Webb, J.S., Kjelleberg, S., Rosche, B.: Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production. Appl. Environ. Microbiol. 72(2), 1639–1644 (2006)Google Scholar
  9. 9.
    Todhanakasem, T., Sangsutthiseree, A., Areerat, K., Young, G.M., Thanonkeo, P.: Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol. 31(5), 451–459 (2014)Google Scholar
  10. 10.
    Yu, J., Yue, G., Zhong, J., Zhang, X., Tan, T.: Immobilization of Saccharomyces cerevisiae to modified bagasse for ethanol production. Renew. Energy 35(6), 1130–1134 (2010)Google Scholar
  11. 11.
    Yu, J., Zhang, X., Tan, T.: A novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129(3), 415–420 (2007)Google Scholar
  12. 12.
    Guénette, M., Duvnjak, Z.: Wood blocks as a carrier for Saccharomyces cerevisiae used in the production of ethanol and fructose. Chem. Eng. J. Biochem. Eng. J. 61(3), 233–240 (1996)Google Scholar
  13. 13.
    Ogbonna, J.C., Mashima, H., Tanaka, H.: Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour. Technol. 76(1), 1–8 (2001)Google Scholar
  14. 14.
    Rattanapan, A., Limtong, S., Phisalaphong, M.: Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons. Appl. Energy 88(12), 4400–4404 (2011)Google Scholar
  15. 15.
    Kourkoutas, Y., Koutinas, A.A., Kanellaki, M., Banat, I.M., Marchant, R.: Continuous wine fermentation using a psychrophilic yeast immobilized on apple cuts at different temperatures. Food Microbiol. 19(2–3), 127–134 (2002)Google Scholar
  16. 16.
    Iconomou, L., Psarianos, C., Koutinas, A.: Ethanol fermentation promoted by delignified cellulosic material. J. Ferment. Bioeng. 79(3), 294–296 (1995)Google Scholar
  17. 17.
    Sakurai, A., Nishida, Y., Saito, H., Sakakibara, M.: Ethanol production by repeated batch culture using yeast cells immobilized within porous cellulose carriers. J. Biosci. Bioeng. 90(5), 526–529 (2000)Google Scholar
  18. 18.
    Liang, L., Zhang, Y., Zhang, L., Zhu, M., Liang, S., Huang, Y.: Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses. J. Ind. Microbiol. Biotechnol. 35(12), 1605–1613 (2008)Google Scholar
  19. 19.
    Ahmadi, F., Zamiri, M.J., Khorvash, M., Ziaee, E., Polikarpov, I.: Pre-treatment of sugarcane bagasse with a combination of sodium hydroxide and lime for improving the ruminal degradability: optimization of process parameters using response surface methodology. J. Appl. Anim. Res. 44(1), 287–296 (2016)Google Scholar
  20. 20.
    Bruno, R.G.S., Rutigliano, H.M., Cerri, R.L., Robinson, P.H., Santos, J.E.P.: Effect of feeding Saccharomyces cerevisiae on performance of dairy cows during summer heat stress. Anim. Feed Sci. Technol. 150(3–4), 175–186 (2009)Google Scholar
  21. 21.
    Fontana, J.D., Ramos, L.P., Deschamps, F.C.: Pretreated sugar cane bagasse as a model for cattle feeding. Appl. Biochem. Biotechnol. 51(1), 105–116 (1995)Google Scholar
  22. 22.
    Todhanakasem, T., Tiwari, R., Thanonkeo, P.: Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw. J. Gen. Appl. Microbiol. 62(2), 68–74 (2016)Google Scholar
  23. 23.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)Google Scholar
  24. 24.
    Sugarcane Bagasse.: Feedipedia, a programme by INRA, CIRAD, AFZ and FAO (2015).
  25. 25.
    Anita, S.H., Mangunwardoyo, W.: Sugarcane Bagasse as a carrier for the immobilization of Saccharomyces cerevisiae in bioethanol production. Makara J. Technol. 20(2), 73–81 (2016)Google Scholar
  26. 26.
    Razmovski, R., Vučurović, V.: Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue. Fuel 92(1), 1–8 (2012)Google Scholar
  27. 27.
    Mussatto, S.I., Aguilar, C.N., Rodrigues, L.R., Teixeira, J.A.: Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. J. Mol. Catal. B 59(1–3), 76–81 (2009)Google Scholar
  28. 28.
    Genisheva, Z., Mussatto, S.I., Oliveira, J.M., Teixeira, J.A.: Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production. Ind. Crops Prod. 34(1), 979–985 (2011)Google Scholar
  29. 29.
    Periyasamy, S., Venkatachalam, S., Ramasamy, S., Srinivasan, V.: Production of bio-ethanol from sugar molasses using Saccharomyces cerevisiae. Mod. Appl. Sci. 3(8), 32 (2009)Google Scholar
  30. 30.
    Peinado, R.A., Moreno, J.J., Villalba, J.M., Gonzlez-Reyes, J.A., Ortega, J.M., Mauricio, J.C.: Yeast biocapsules: a new immobilization method and their applications. Enzym. Microb. Technol. 40(1), 79–84 (2006)Google Scholar
  31. 31.
    Sahin, H.T., Arslan, M.B.: A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. Int. J. Mol. Sci. 9(1), 78–88 (2008)Google Scholar
  32. 32.
    Kourkoutas, Y., Bekatorou, A., Banat, I.M., Marchant, R., Koutinas, A.A.: Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 21(4), 377–397 (2004)Google Scholar
  33. 33.
    Vučurović, V.M., Razmovski, R.N., Popov, S.D.: (2009) Ethanol production using Saccharomyces cerevisiae cells immobilised on corn stem ground tissue. Zbornik Matice srpske za prirodne nauke 116:315–322Google Scholar
  34. 34.
    Nuanpeng, S., Laopaiboon, L., Srinophakun, P., Klanrit, P., Jaisil, P., Laopaiboon, P.: Ethanol production from sweet sorghum juice under very high gravity conditions: batch, repeated-batch and scale up fermentation. Electron. J. Biotechnol. 14(1), 4–5 (2011)Google Scholar
  35. 35.
    Bisping, B., Rehm, H.J.: Glycerol production by cells of Saccharomyces cerevisiae immobilized in sintered glass. Appl. Microbiol. Biotechnol. 23(3–4), 174–179 (1986)Google Scholar
  36. 36.
    Ramakrishna, S.V., Sreedharan, V.P., Prema, P.: Continuous ethanol production with immobilized yeast cells in a packed bed reactor. In: Bioreactor Immobilized Enzymes and Cells: Fundamentals and Applications-I. Elsevier, Amsterdam (1988)Google Scholar
  37. 37.
    Karp, S.G., Woiciechowski, A.L., Soccol, V.T., Soccol, C.R.: Pretreatment strategies for delignification of sugarcane bagasse: a review. Braz. Arch. Biol. Technol. 56(4), 679–689 (2013)Google Scholar
  38. 38.
    Cleasby, T.G.: The feeding value of molasses. South Afr. Sugar J. 1, 47–360 (1963)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Food Biotechnology, Faculty of BiotechnologyAssumption UniversityBangkokThailand
  2. 2.Department of Agro-Industry, Faculty of BiotechnologyAssumption UniversityBangkokThailand

Personalised recommendations