Bacterial Succession in the Thermophilic Phase of Composting of Anaerobic Digestates

  • Orhan Ince
  • E. Gozde Ozbayram
  • Çağrı AkyolEmail author
  • E. Irmak Erdem
  • Gulsah Gunel
  • Bahar Ince
Original Paper


Organic matter degradation and bacterial communities associated to the thermophilic phase of composting were compared using two different types of anaerobic digestates, one from a sewage sludge digester (SD), and the other from an agricultural digester (AD). The composting process exhibited similar variations in temperature, pH, moisture content and bacterial profiles, despite the inherent feedstock differences along with distinctive initial bacterial composition. According to the data obtained from 16S rRNA gene amplicon sequencing, SD constituted more than 20 bacterial phyla with Proteobacteria (21%) and Chloroflexi (21%) being predominant, meanwhile AD was represented by only 7 phyla in which Firmicutes was the most abundant phylum (73%). Nevertheless, bacterial community profiles of the two composting systems became more similarly represented at the phylum level, both dominated by Proteobacteria (65% in AD and 61% in SD), whereas Chromatiaceae and Sphingomonadaceae were the most abundant families in AD and SD, respectively. Highly diverse but similar bacterial communities were detected during the composting of different anaerobic digestates at the thermophilic phase.

Graphical Abstract


Agricultural waste Anaerobic digestate Composting Microbial community Sewage sludge 



This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK Project No. 113Y451).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Banegas, V., Moreno, J.L., Moreno, J.I., García, C., León, G., Hernández, T.: Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Manag. 27, 1317–1327 (2007). CrossRefGoogle Scholar
  2. 2.
    Liu, D., Zhang, R., Wu, H., Xu, D., Tang, Z., Yu, G., Xu, Z., Shen, Q.: Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresour. Technol. 102, 9040–9049 (2011). CrossRefGoogle Scholar
  3. 3.
    Ince, O., Ozbayram, E.G., Akyol, Ç, Ince, O., Ince, B.: Composting practice for sustainable waste management: a case study in Istanbul. Desalin. Water Treat. 57, 14473–14477 (2016). CrossRefGoogle Scholar
  4. 4.
    Nakasaki, K., Tran, L.T.H., Idemoto, Y., Abe, M., Rollon, A.P.: Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge. Bioresour. Technol. 100, 676–682 (2009). CrossRefGoogle Scholar
  5. 5.
    Wang, K., Mao, H., Li, X.: Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. Bioresour. Technol. 249, 527–535 (2018). CrossRefGoogle Scholar
  6. 6.
    Grigatti, M., Cavani, L., Marzadori, C., Ciavatta, C.: Recycling of dry-batch digestate as amendment: soil C and N dynamics and ryegrass nitrogen utilization efficiency. Waste Biomass Valoriz. 5, 823–833 (2014). CrossRefGoogle Scholar
  7. 7.
    Franke-Whittle, I.H., Confalonieri, A., Insam, H., Schlegelmilch, M., Körner, I.: Changes in the microbial communities during co-composting of digestates. Waste Manag. 34, 632–641 (2014). CrossRefGoogle Scholar
  8. 8.
    Wu, C., Li, W., Wang, K., Li, Y.: Usage of pumice as bulking agent in sewage sludge composting. Bioresour. Technol. 190, 516–521 (2015). CrossRefGoogle Scholar
  9. 9.
    Feng, L., Luo, J., Chen, Y.: Dilemma of sewage sludge treatment and disposal in China. Environ. Sci. Technol. 49, 4781–4782 (2015). CrossRefGoogle Scholar
  10. 10.
    Zhang, D., Luo, W., Li, Y., Wang, G., Li, G.: Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions. Bioresour. Technol. 250, 853–859 (2018). CrossRefGoogle Scholar
  11. 11.
    Villar, I., Alves, D., Garrido, J., Mato, S.: Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Manag. 54, 83–92 (2016). CrossRefGoogle Scholar
  12. 12.
    Xu, J., Lu, Y., Shan, G., Song, X., Huang, J., Li, Q.: Inoculation with compost-born thermophilic complex microbial consortium induced organic matters degradation while reduced nitrogen loss during co-composting of dairy manure and sugarcane leaves. Waste Biomass Valoriz. (2018). CrossRefGoogle Scholar
  13. 13.
    López-González, J.A., Vargas-García, MdelC., López, M.J., Suárez-Estrella, F., Jurado, MdelM., Moreno, J.: Biodiversity and succession of mycobiota associated to agricultural lignocellulosic waste-based composting. Bioresour. Technol. 187, 305–313 (2015). CrossRefGoogle Scholar
  14. 14.
    Sundberg, C., Al-Soud, W.A., Larsson, M., Alm, E., Yekta, S.S., Svensson, B.H., Sørensen, S.J., Karlsson, A.: 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol. Ecol. 85, 612–626 (2013). CrossRefGoogle Scholar
  15. 15.
    Green, S.J., Michel, F.C., Hadar, Y., Minz, D.: Similarity of bacterial communities in sawdust- and straw-amended cow manure composts. FEMS Microbiol. Lett. 233, 115–123 (2004). CrossRefGoogle Scholar
  16. 16.
    Karadag, D., Özkaya, B., Ölmez, E., Nissilä, M.E., Çakmakçi, M., Yildiz, Ş, Puhakka, J.A.: Profiling of bacterial community in a full-scale aerobic composting plant. Int. Biodeterior. Biodegrad. 77, 85–90 (2013). CrossRefGoogle Scholar
  17. 17.
    Tian, W., Sun, Q., Xu, D., Zhang, Z., Chen, D., Li, C., Shen, Q., Shen, B.: Succession of bacterial communities during composting process as detected by 16S rRNA clone libraries analysis. Int. Biodeterior. Biodegrad. 78, 58–66 (2013). CrossRefGoogle Scholar
  18. 18.
    Wang, X., Cui, H., Shi, J., Zhao, X., Zhao, Y., Wei, Z.: Bioresource technology relationship between bacterial diversity and environmental parameters during composting of different raw materials. Bioresour. Technol. 198, 395–402 (2015). CrossRefGoogle Scholar
  19. 19.
    de Gannes, V., Eudoxie, G., Hickey, W.J.: Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Bioresour. Technol. 133, 573–580 (2013). CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Zhang, H., Wang, Z., Chen, G., Wang, L.: Dynamic changes of the dominant functioning microbial community in the compost of a 90-m3aerobic solid state fermentor revealed by integrated meta-omics. Bioresour. Technol. 203, 1–10 (2016). CrossRefGoogle Scholar
  21. 21.
    Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H., Wu, W.: Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels. 9, 1–17 (2016). CrossRefGoogle Scholar
  22. 22.
    APHA/AWWA/WEF: Standard Methods for the Examination of Water and Wastewater. Stand. Methods. 541 (2012). ISBN 9780875532356Google Scholar
  23. 23.
    Ondov, B.D., Bergman, N.H., Phillippy, A.M.: Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011). CrossRefGoogle Scholar
  24. 24.
    Liang, B., Wang, L.Y., Mbadinga, S.M., Liu, J.F., Yang, S.Z., Gu, J.D., Mu, B.Z.: Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5, 37 (2015). CrossRefGoogle Scholar
  25. 25.
    Sträuber, H., Lucas, R., Kleinsteuber, S.: Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process. Appl. Microbiol. Biotechnol. 100, 479–491 (2016). CrossRefGoogle Scholar
  26. 26.
    Oren, A.: The order Halanaerobiales, and the families Halanaerobiaceae and Halobacteroidaceae. In: The Prokaryotes, pp. 153–177. Springer, Berlin (2014)Google Scholar
  27. 27.
    Ozbayram, E.G., Kleinsteuber, S., Nikolausz, M., Ince, B., Ince, O.: Enrichment of lignocellulose-degrading microbial communities from natural and engineered methanogenic environments. Appl. Microbiol. Biotechnol. 102, 1035–1043 (2018). CrossRefGoogle Scholar
  28. 28.
    Vargas-García, M.C., Suárez-Estrella, F., López, M.J., Moreno, J.: Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag. 30, 771–778 (2010). CrossRefGoogle Scholar
  29. 29.
    Wang, L., Wang, L., Wang, D., Li, J.: Isolation and application of thermophilic and psychrophilic microorganisms in the composting process. Waste Biomass Valoriz. 5, 433–440 (2014). CrossRefGoogle Scholar
  30. 30.
    Bustamante, M.A., Restrepo, A.P., Alburquerque, J.A., Pérez-Murcia, M.D., Paredes, C., Moral, R., Bernal, M.P.: Recycling of anaerobic digestates by composting: effect of the bulking agent used. J. Clean. Prod. 47, 61–69 (2013). CrossRefGoogle Scholar
  31. 31.
    Chroni, C., Kyriacou, A., Manios, T., Lasaridi, K.E.: Investigation of the microbial community structure and activity as indicators of compost stability and composting process evolution. Bioresour. Technol. 100, 3745–3750 (2009). CrossRefGoogle Scholar
  32. 32.
    Imhoff, J.: The Chromatiaceae. The prokaryotes. pp. 846–873. Springer, New York (2006). CrossRefGoogle Scholar
  33. 33.
    López-González, J.A., Suárez-Estrella, F., Vargas-García, M.C., López, M.J., Jurado, M.M., Moreno, J.: Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresour. Technol. 175, 406–416 (2015). CrossRefGoogle Scholar
  34. 34.
    Manz, W., Amann, R., Ludwig, W., Vancanneyt, M., Schleifer, K.H.: Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology. 142, 1097–1106 (1996). CrossRefGoogle Scholar
  35. 35.
    Willems, A.: The family Comamonadaceae. In: The Prokaryotes, pp. 777–851. Springer, Berlin (2014)CrossRefGoogle Scholar
  36. 36.
    Mandic-Mulec, I., Stefanic, P., van Elsas, J.D.: Ecology of Bacillaceae. In: The bacterial spore: from molecules to systems, pp. 59–85. American Society of Microbiology, Atlanta (2015)Google Scholar
  37. 37.
    Carareto Alves, L.M., de Souza, J.A.M., Varani, A., de Mello, L.: The family Rhizobiaceae. In: The Prokaryotes, pp. 419–437. Springer, Berlin (2014)CrossRefGoogle Scholar
  38. 38.
    Austin, B.: The family Alcaligenaceae. In: The Prokaryotes, pp. 729–757. Springer, Berlin (2014)CrossRefGoogle Scholar
  39. 39.
    Zhao, H.Y., Li, J., Liu, J.J., Lü, Y.C., Wang, X.F., Cui, Z.J.: Microbial community dynamics during biogas slurry and cow manure compost. J. Integr. Agric. 12, 1087–1097 (2013). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Environmental Engineering, Faculty of Civil EngineeringIstanbul Technical UniversityIstanbulTurkey
  2. 2.Institute of Environmental SciencesBoğaziçi UniversityIstanbulTurkey

Personalised recommendations