Advertisement

Tuna Condensate Waste with Molasses as a Renewable Substrate for Antifungal Compounds by Streptomyces philanthi RL-1-178 Against Aflatoxingenic B1 (AFB1) Aspergillus flavus

  • Sawai Boukaew
  • Wanida Petlamul
  • Poonsuk Prasertsan
Original Paper
  • 12 Downloads

Abstract

This study aims to utilize tuna condensate as a renewable resource for production of antifungal compounds by Streptomyces philanthi RL-1-178 against aflatoxingenic B1 (AFB1) Aspergillus flavus. Among ten isolates of A. flavus tested, the strain PSRDC-4 was the most toxigenic strain (1432 ppb of AFB1) and aggressive to S. philanthi (85.9% inhibition). The effective dose (100% inhibition) of the culture filtrate RL-1-178 was at 10.0% (v/v) with 1 h exposure time. The antifungal compounds, identified by GC–MS analysis, were consisted of 105 components with 2,4-imidazolidinedione (31.2%) followed by acetic acid (25.27%) was the most abundant. The optimum condition for growth and production of antifungal compounds from S. philanthi RL-1-178 was as following; tuna condensate of 15,000 mg L−1 COD, the initial pH at 7.0, incubation temperature at 30 °C and supplemented with 8 g L−1 of molasses. Therefore, tuna condensate exhibited a high potential to be utilized as an alternative medium for antifungal production by S. philanthi RL-1-178.

Keywords

A. flavus Antifungal activity Molasses S. philanthi Tuna condensate Waste utilization 

Notes

Acknowledgements

This research study was financially supported by the Agricultural Research Development Agency (Public Organization) (PRP5905021490) and Thailand Research Fund (RTA6080010).

References

  1. 1.
    Prasertsan, P., Choorit, W.: Problem and solution of the occurrence of red colour in wastewater of seafood processing plant. Songklanakarin J. Sci. Technol. 10, 439–446 (1988)Google Scholar
  2. 2.
    Prasertsan, P., Choorit, W., Suwanno, S.: Optimisation for growth of Rhodocyclus gelatinosus in seafood processing effluents. World J. Microbiol. Biotechnol. 9, 593–596 (1993)CrossRefGoogle Scholar
  3. 3.
    Sarabok, A., H-Kittikun, A.: Enzymatic hydrolysis of tuna condensate for flavour sauce production. Songklanakarin J. Sci. Technol. 21, 291–500 (1999)Google Scholar
  4. 4.
    Prasertsan, P., Jaturapornpipat, M., Siripatana, C.: Utilization and treatment of tuna condensate by photosynthetic bacteria. Pure Appl. Chem. 69, 2439–2445 (1997)CrossRefGoogle Scholar
  5. 5.
    Azad, S.A., Vikineswary, S., Chong, V.C., Ramachandran, K.B.: Rhodovulum sulfidophilum in the treatment and utilization of sardine processing wastewater. Lett. Appl. Microbiol. 38, 13–18 (2004)CrossRefGoogle Scholar
  6. 6.
    Saimmai, A., Sobhon, V., Maneerat, S.: Molasses as a whole medium for biosurfactants production by Bacillus strains and their application. Appl. Biochem. Biotechnol. 165, 315–335 (2011)CrossRefGoogle Scholar
  7. 7.
    Płaza, G.A., Turek, A., Król, E., Szczygłowska, R.: Antifungal and antibacterial properties of surfactin isolated from Bacillus subtilis growing on molasses. Afr. J. Microbiol. Res. 7, 3165–3170 (2013)CrossRefGoogle Scholar
  8. 8.
    Strohl, W.R.: Antimicrobials. In: Bull, A.T. (ed.) Microbial Diversity and Bioprocessing, pp. 336–355. American Society for Microbiology, Washington, D.C. (2004)CrossRefGoogle Scholar
  9. 9.
    Berdy, J.: Bioactive microbial metabolites. J. Antibiot. 58, 1–26 (2005)CrossRefGoogle Scholar
  10. 10.
    Prabavathy, V.R., Mathivanan, N., Murugesan, K.: Control of blast and sheath blight diseases of rice using antifungal metabolites produced by Streptomyces sp. PM5. Biol. Control 39, 313–319 (2006)CrossRefGoogle Scholar
  11. 11.
    Li, Q., Jiang, Y., Ning, P., Zheng, L., Huang, J., Li, G., Jiang, D., Hsiang, T.: Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporusJK-1. Biol. Control 58, 139–148 (2011)CrossRefGoogle Scholar
  12. 12.
    Shakeel, Q., Lyu, A., Zhang, J., Wu, M., Chen, S., Chen, W., Li, G., Yang, L.: Optimization of the cultural medium and conditions for production of antifungal substances by Streptomyces platensis 3–10 and evaluation of its efficacy in suppression of clubroot disease (Plasmodiophora brassicae) of oilseed rape. Biol. Control 101, 59–68 (2016)CrossRefGoogle Scholar
  13. 13.
    Boukaew, S., Prasertsan, P., Troulet, C., Bardin, M.: Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. Biocontrol 62, 793–803 (2017)CrossRefGoogle Scholar
  14. 14.
    Sangkanu, S., Rukachaisirikul, V., Suriyachadkun, C., Phongpaichit, S.: Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microb. Pathog. 112, 303–312 (2017)CrossRefGoogle Scholar
  15. 15.
    Boukaew, S., Chuenchit, S., Petcharat, V.: Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili. Biocontrol 56, 365–374 (2011)CrossRefGoogle Scholar
  16. 16.
    Boukaew, S., Klinmanee, C., Prasertsan, P.: Potential for the integration of biological and chemical control of sheath blight disease caused by Rhizoctonia solani on rice. World J. Microbiol. Biotechnol. 29, 1885–1893 (2013)CrossRefGoogle Scholar
  17. 17.
    Boukaew, S., Prasertsan, P.: Suppression of rice sheath blight disease using heat stable culture filtrate of Streptomyces philanthi RM-1-138. Crop Prot. 61, 1–10 (2014)CrossRefGoogle Scholar
  18. 18.
    Zacky, F.A., Ting, A.S.Y.: Investigating the bioactivity of cells and cell-free extracts of Streptomyces griseus towards Fusarium oxysporum f. sp. cubense race 4. Biol. Control 66, 204–208 (2013)CrossRefGoogle Scholar
  19. 19.
    Chen, Y.Y., Chen, P.C., Tsay, T.T.: The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biol. Control 98, 34–42 (2016)CrossRefGoogle Scholar
  20. 20.
    Awla, H.K., Kadir, J., Othman, R., Rashid, T.S., Hamid, S., Wong, M.Y.: Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp. UPMRS4 against Pyricularia oryzae. Biol. Control 112, 55–63 (2017)CrossRefGoogle Scholar
  21. 21.
    Singh, S.P., Gaur, R.: Endophytic Streptomyces spp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea. Biol. Control 104, 44–56 (2017)CrossRefGoogle Scholar
  22. 22.
    Zain, M.E.: Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 15, 129–144 (2011)CrossRefGoogle Scholar
  23. 23.
    Gong, Y., Hounsa, A., Egal, S., Turner, P.C., Sutcliffe, A.E., Hall, A.J., Cardwell, K., Wild, C.P.: Postweaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin, West Africa. Environ. Health Perspect. 112, 1334–1338 (2004)CrossRefGoogle Scholar
  24. 24.
    AOAC.: Official Methods of Analysis of the Association of Official Chemists. 14th ed. The Association of Official Analytical Chemists. Washington, D.C. (1984)Google Scholar
  25. 25.
    Singh, R., Pradhan, K.: Determination of nitrogen and protein by Kjeldahl method. In: Forage Evaluation Science, p. 23, Pvt. Publishers Ltd., New Delhi (1981)Google Scholar
  26. 26.
    Murphy, J., Riley, J.P.: A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962)CrossRefGoogle Scholar
  27. 27.
    Islam, M.R., Jeong, Y.T., Ryu, Y.J., Song, C.H., Lee, S.Y.: Identification and optimal culture condition of Streptomyces albidoflavus C247 producing antifungal agents against Rhizoctonia solani AG2-2. Mycobiology 27, 114–120 (2009)CrossRefGoogle Scholar
  28. 28.
    Vergopoulou, S., Galanopoulu, D., Markaki, P.: Methyl jasmonate stimulates aflatoxin B1 biosynthesis by Aspergillus parasiticus. J. Agric. Food Chem. 49, 3494–3498 (2001)CrossRefGoogle Scholar
  29. 29.
    Nogueira, J.H.C., Gonçalez, E., Galleti, S.R., Facanali, R., Marques, M.O.M., Felício, J.D.: Ageratum conyzoides essential oil as aflatoxin suppressor of Aspergillus flavus. Int. J. Food Microbiol. 137, 55–60 (2010)CrossRefGoogle Scholar
  30. 30.
    Komala, V.V., Ratnavathi, C.V., Kumar, B.V., Das, I.K.: Inhibition of aflatoxin B1 production by an antifungal component, eugenol in stored sorghum grains. Food Control 26, 139–146 (2012)CrossRefGoogle Scholar
  31. 31.
    Rammanee, K., Hongpattarakere, T.: Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Technol. 4, 1050–1059 (2011)CrossRefGoogle Scholar
  32. 32.
    Sangmanee, P., Hongpattarakere, T.: Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillusparasiticus. Food Control 40, 224–233 (2014)CrossRefGoogle Scholar
  33. 33.
    Li, W.R., Shi, Q.S., Ouyang, Y.S., Chen, Y.B., Duan, S.S.: Antifungal effects of citronella oil against Aspergillus niger ATCC 16404. Appl. Microbiol. Biotechnol. 97, 7483–7492 (2013)CrossRefGoogle Scholar
  34. 34.
    Prapagdee, B., Kuekulvong, C., Mongkolsuk, S.: Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int. J. Biol. Sci. 4, 330–337 (2008)CrossRefGoogle Scholar
  35. 35.
    Leelasuphakul, W., Sivanunsakul, P., Phongpaichit, S.: Purification, characterization and synergistic activity of β-1, 3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89 – 24 against rice blast and sheath blight. Enzym. Microb. Technol. 38, 990–997 (2006)CrossRefGoogle Scholar
  36. 36.
    Arrebola, E., Sivakumar, D., Korsten, L.: Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol. Control 53, 122–128 (2010)CrossRefGoogle Scholar
  37. 37.
    Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., Hsiang, T.: Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol. Technol. 58, 157–165 (2010)CrossRefGoogle Scholar
  38. 38.
    Corcuff, R., Mercier, J., Tweddell, R., Arul, J.: Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato. Fungal Biol. 115, 220–227 (2011)CrossRefGoogle Scholar
  39. 39.
    Kanjan, P., Hongpattarakere, T.: Antibacterial metabolites secreted under glucose-limited environment of themimicked proximal colon model by lactobacilli abundant in infant feces. Appl. Microbiol. Biotechnol. 100, 7651–7664 (2016)CrossRefGoogle Scholar
  40. 40.
    Niku-Paavola, M.L., Laitila, L., Mattila-Sandholm, T., Haikara, A.: New types of antimicrobial compounds produced by Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 86, 29–35 (1999)Google Scholar
  41. 41.
    Ouhdouch, Y., Barakate, M., Finanse, C.: Actinomycetes of Moroccan habitats: isolation and screening for antifungal activities. Eur. J. Soil Biol. 37, 69–74 (2001)CrossRefGoogle Scholar
  42. 42.
    Tian, J., Zeng, X., Feng, Z., Miao, X., Peng, X., Wang, Y.: Zanthoxylum molle Rehd. essential oil as a potential natural preservative in management of Aspergillus flavus. Ind. Crops Prod. 60, 151–159 (2014)CrossRefGoogle Scholar
  43. 43.
    Tian, J., Huang, B., Luo, X., Zeng, H., Ban, X., He, J., Wang, Y.: The control of Aspergillus flavus with Cinnamomum jensenianum Hand.-Mazz essential oil and its potential use as a food preservative. Food Chem. 130, 520–527 (2012)CrossRefGoogle Scholar
  44. 44.
    Joshi, S., Bharucha, C., Jha, S., Yadav, S., Nerurkar, A., Desai, A.J.: Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour. Technol. 99, 195–199 (2008)CrossRefGoogle Scholar
  45. 45.
    Rashedi, H., Assadi, M.M., Jamshidi, E., Bonakdarpour, B.: Production of rhamnolipids by Pseudomonas aeruginosa growing on carbon sources. Int. J. Environ. Sci. Technol. 3, 297–303 (2006)CrossRefGoogle Scholar
  46. 46.
    Srinivasan, M.C., Laxman, R.S., Deshpande, M.V.: Physiology and nutritional aspects of actinomycetes: an overview. World J. Microbiol. Biotechnol. 7, 171–184 (1991)CrossRefGoogle Scholar
  47. 47.
    Sole, M., Francia, A., Rius, N., Loren, J.G.: The role of pH in the glucose effect on prodigiosin production by non-proliferating cells of Serratia marcescens. Lett. Appl. Microbiol. 25, 81–84 (1997)CrossRefGoogle Scholar
  48. 48.
    Boukaew, S., Prasertsan, P.: Factors affecting antifungal activity of Streptomyces philanthi RM-1-138 against Rhizoctonia solani. World J. Microbiol. Biotechnol. 30, 323–329 (2014)CrossRefGoogle Scholar
  49. 49.
    Battacharyya, B.K., Pal, S.C., Sen, S.K.: Antibiotic production by Streptomyces hygroscopicus D1.5: cultural effect. Rev. Microbiol. 29, 49–52 (1998)Google Scholar
  50. 50.
    Yi, Y.J., Li, Y.S., Xia, B., Li, W.P., Pang, L., Tong, Z.D.: Optimization of medium composition and culture conditions for antifungal activity of a tomato endophytic bacterium. Biol. Control 82, 69–75 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Sawai Boukaew
    • 1
  • Wanida Petlamul
    • 1
  • Poonsuk Prasertsan
    • 2
  1. 1.College of Innovation and ManagementSongkhla Rajabhat UniversitySongkhlaThailand
  2. 2.Research and Development OfficePrince of Songkla UniversitySongkhlaThailand

Personalised recommendations