Advertisement

Evaluation the Effects of Ultrasonic Parameters on Simultaneously Extraction and Size Reduction of Lycopene from Tomato Processing Waste

  • Navideh AnarjanEmail author
Original Paper

Abstract

Lycopene was simultaneously extracted from tomato processing waste and size reduced into nano-ranges from 36 to 150 nm, via ultrasonic assisted nanoprecipitation technique. The effects of main processing parameters namely, organic to aqueous phase ratio, ultrasonic amplitude and time were evaluated on mean particle size, polydispersity (PDI) and lycopene content of produced nanodispersions, using response surface method based on central composite design. All studied parameters affected the selected responses significantly (p-value < 0.05). The studied characteristics’ changes were significantly (p-value < 0.05) fitted to second order polynomial regression models of studied independent parameters by quite high coefficients of determination (R2 > 0.9). The most desirable lycopene nanodispersions with mean particle size of 66.3 nm, PDI of 0.245 and lycopene content of 52 mg/g waste, were produced at organic to aqueous phase ratio of 0.5, and ultrasonication for 20 min at amplitude of 70%. The resulted insignificant differences between experimental and predicted data, certified the suitability of suggested response surface models.

Keywords

Lycopene Nanodispersion Ultrasonic irradiation Tomato processing waste 

Notes

References

  1. 1.
    Tan, C.P., Nakajima, M.: β-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chem. 92(4), 661–671 (2005).  https://doi.org/10.1016/j.foodchem.2004.08.044 CrossRefGoogle Scholar
  2. 2.
    Santini, A., Novellino, E.: Nutraceuticals—shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol. 11(6), 545–547 (2018).  https://doi.org/10.1080/17512433.2018.1464911 CrossRefGoogle Scholar
  3. 3.
    Santini, A., Tenore, G.C., Novellino, E.: Nutraceuticals: a paradigm of proactive medicine. Eur. J. Pharm. Sci. 96, 53–61 (2017).  https://doi.org/10.1016/j.ejps.2016.09.003 CrossRefGoogle Scholar
  4. 4.
    Poojary, M.M., Passamonti, P.: Extraction of lycopene from tomato processing waste: kinetics and modelling. Food Chem. 173, 943–950 (2015).  https://doi.org/10.1016/j.foodchem.2014.10.127 CrossRefGoogle Scholar
  5. 5.
    Naviglio, D., Pizzolongo, F., Ferrara, L., Aragòn, A., Santini, A.: Extraction of pure lycopene from industrial tomato by-products in water using a new high-pressure process. J. Sci. Food Agric. 88(14), 2414–2420 (2008).  https://doi.org/10.1002/jsfa.3334 CrossRefGoogle Scholar
  6. 6.
    Gervasi, T., Pellizzeri, V., Benameur, Q., Gervasi, C., Santini, A., Cicero, N., Dugo, G.: Valorization of raw materials from agricultural industry for astaxanthin and β-carotene production by Xanthophyllomyces dendrorhous. Nat. Prod. Res. 32(13), 1554–1561 (2018).  https://doi.org/10.1080/14786419.2017.1385024 CrossRefGoogle Scholar
  7. 7.
    Anarjan, N., Jafarizadeh-Malmiri, H., Nehdi, I.A., Sbihi, H.M., Al-Resayes, S.I., Tan, C.P.: Effects of homogenization process parameters on physicochemical properties of astaxanthin nanodispersions prepared using a solvent-diffusion technique. Int. J. Nanomed. 10, 1109–1118 (2015).  https://doi.org/10.2147/IJN.S72835 CrossRefGoogle Scholar
  8. 8.
    Shi, J., Xue, S.J., Wang, B., Wang, W., Ye, X., Quek, S.Y.: Optimization of formulation and influence of environmental stresses on stability of lycopene-microemulsion. LWT Food Sci. Technol. 60(2), 999–1008 (2015).  https://doi.org/10.1016/j.lwt.2014.10.066 CrossRefGoogle Scholar
  9. 9.
    Anarjan, N., Tan, C.P., Ling, T.C., Lye, K.L., Malmiri, H.J., Nehdi, I.A., Cheah, Y.K., Mirhosseini, H., Baharin, B.S.: Effect of organic-phase solvents on physicochemical properties and cellular uptake of astaxanthin nanodispersions. J. Agric. Food Chem. 59(16), 8733–8741 (2011).  https://doi.org/10.1021/jf201314u CrossRefGoogle Scholar
  10. 10.
    Periasamy, V.S., Athinarayanan, J., Alshatwi, A.A.: Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem. 31, 449–455 (2016).  https://doi.org/10.1016/j.ultsonch.2016.01.035 CrossRefGoogle Scholar
  11. 11.
    Luque de Castro, M.D., Priego-Capote, F.: Ultrasound-assisted preparation of liquid samples. Talanta 72(2), 321–334 (2007).  https://doi.org/10.1016/j.talanta.2006.11.013 CrossRefGoogle Scholar
  12. 12.
    Kaur, K., Kumar, R., Arpita, Goel, S., Uppal, S., Bhatia, A., Mehta, S.K.: Physiochemical and cytotoxicity study of TPGS stabilized nanoemulsion designed by ultrasonication method. Ultrason. Sonochem. 34, 173–182 (2017).  https://doi.org/10.1016/j.ultsonch.2016.05.037 CrossRefGoogle Scholar
  13. 13.
    Kaur, K., Kumar, R., Mehta, S.K.: Formulation of saponin stabilized nanoemulsion by ultrasonic method and its role to protect the degradation of quercitin from UV light. Ultrason. Sonochem. 31, 29–38 (2016).  https://doi.org/10.1016/j.ultsonch.2015.11.017 CrossRefGoogle Scholar
  14. 14.
    Abbas, S., Bashari, M., Akhtar, W., Li, W.W., Zhang, X.: Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrason. Sonochem. 21(4), 1265–1274 (2014).  https://doi.org/10.1016/j.ultsonch.2013.12.017 CrossRefGoogle Scholar
  15. 15.
    Xu, Y., Pan, S.: Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.). Ultrason. Sonochem. 20(4), 1026–1032 (2013).  https://doi.org/10.1016/j.ultsonch.2013.01.006 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Naviglio, D., Caruso, T., Iannece, P., Aragòn, A., Santini, A.: Characterization of high purity lycopene from tomato wastes using a new pressurized extraction approach. J. Agric. Food Chem. 56(15), 6227–6231 (2008).  https://doi.org/10.1021/jf703788c CrossRefGoogle Scholar
  17. 17.
    Anarjan, N., Jouyban, A.: Preparation of lycopene nanodispersions from tomato processing waste: effects of organic phase composition. Food Bioprod. Process. 103, 104–113 (2017).  https://doi.org/10.1016/j.fbp.2017.03.003 CrossRefGoogle Scholar
  18. 18.
    Tang, S.Y., Manickam, S., Wei, T.K., Nashiru, B.: Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrason. Sonochem. 19(2), 330–345 (2012).  https://doi.org/10.1016/j.ultsonch.2011.07.001 CrossRefGoogle Scholar
  19. 19.
    Eh, A.L.-S., Teoh, S.-G.: Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason. Sonochem. 19(1), 151–159 (2012).  https://doi.org/10.1016/j.ultsonch.2011.05.019 CrossRefGoogle Scholar
  20. 20.
    Anarjan, N., Mirhosseini, H., Baharin, B.S., Tan, C.P.: Effect of processing conditions on physicochemical properties of astaxanthin nanodispersions. Food Chem. 123(2), 477–483 (2010).  https://doi.org/10.1016/j.foodchem.2010.05.036 CrossRefGoogle Scholar
  21. 21.
    Anarjan, N., Nehdi, I.A., Tan, C.P.: Influence of astaxanthin, emulsifier and organic phase concentration on physicochemical properties of astaxanthin nanodispersions. Chem. Cent. J. 7(1) (2013).  https://doi.org/10.1186/1752-153X-7-127
  22. 22.
    Anarjan, N., Mirhosseini, H., Baharin, B.S., Tan, C.P.: Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. LWT Food Sci. Technol. 44(7), 1658–1665 (2011).  https://doi.org/10.1016/j.lwt.2011.01.013 CrossRefGoogle Scholar
  23. 23.
    Gaikwad, S.G., Pandit, A.B.: Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrason. Sonochem. 15(4), 554–563 (2008).  https://doi.org/10.1016/j.ultsonch.2007.06.011 CrossRefGoogle Scholar
  24. 24.
    Konwarh, R., Pramanik, S., Kalita, D., Mahanta, C.L., Karak, N.: Ultrasonication—a complementary ‘green chemistry’ tool to biocatalysis: a laboratory-scale study of lycopene extraction. Ultrason. Sonochem. 19(2), 292–299 (2012).  https://doi.org/10.1016/j.ultsonch.2011.07.010 CrossRefGoogle Scholar
  25. 25.
    Thorat, A.A., Dalvi, S.V.: Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chem. Eng. J. 181–182, 1–34 (2012).  https://doi.org/10.1016/j.cej.2011.12.044 CrossRefGoogle Scholar
  26. 26.
    Kentish, S., Wooster, T.J., Ashokkumar, M., Balachandran, S., Mawson, R., Simons, L.: The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 9(2), 170–175 (2008).  https://doi.org/10.1016/j.ifset.2007.07.005 CrossRefGoogle Scholar
  27. 27.
    Jadhav, A.J., Holkar, C.R., Karekar, S.E., Pinjari, D.V., Pandit, A.B.: Ultrasound assisted manufacturing of paraffin wax nanoemulsions: process optimization. Ultrason. Sonochem. 23(0), 201–207 (2015).  https://doi.org/10.1016/j.ultsonch.2014.10.024 CrossRefGoogle Scholar
  28. 28.
    Leong, T.S.H., Wooster, T.J., Kentish, S.E., Ashokkumar, M.: Minimising oil droplet size using ultrasonic emulsification. Ultrason. Sonochem. 16(6), 721–727 (2009).  https://doi.org/10.1016/j.ultsonch.2009.02.008 CrossRefGoogle Scholar
  29. 29.
    Horn, D., Rieger, J.: Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew. Chem. Int. Ed. 40(23), 4330–4361 (2001).  https://doi.org/10.1002/1521-3773(20011203)40:23%3C4330::AID-ANIE4330%3E3.0.CO;2-W CrossRefGoogle Scholar
  30. 30.
    McClements, D.J.: Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds. Taylor and Francis, Boca Raton (2014)CrossRefGoogle Scholar
  31. 31.
    Jafari, S.M., Assadpoor, E., He, Y., Bhandari, B.: Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22(7), 1191–1202 (2008).  https://doi.org/10.1016/j.foodhyd.2007.09.006 CrossRefGoogle Scholar
  32. 32.
    Verma, S., Burgess, D.: Solid nanosuspensions: the emerging technology and pharmaceutical applications as nanomedicine. In: Kulshreshtha, A.K., Singh, O.N., Wall, G.M. (eds.) Pharmaceutical Suspensions: From Formulation Development to Manufacturing, pp. 285–318. Springer, New York (2010)CrossRefGoogle Scholar
  33. 33.
    Luengo, E., Condón-Abanto, S., Condón, S., Álvarez, I., Raso, J.: Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Sep. Purif. Technol. 136, 130–136 (2014).  https://doi.org/10.1016/j.seppur.2014.09.008 CrossRefGoogle Scholar
  34. 34.
    Periago, M.J., Rincón, F., Agüera, M.D., Ros, G.: Mixture approach for optimizing lycopene extraction from tomato and tomato products. J. Agric. Food Chem. 52(19), 5796–5802 (2004).  https://doi.org/10.1021/jf049345h CrossRefGoogle Scholar
  35. 35.
    Vilkhu, K., Mawson, R., Simons, L., Bates, D.: Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innov. Food Sci. Emerg. Technol. 9(2), 161–169 (2008).  https://doi.org/10.1016/j.ifset.2007.04.014 CrossRefGoogle Scholar
  36. 36.
    Anarjan, N., Tan, C.P.: Chemical stability of astaxanthin nanodispersions in orange juice and skimmed milk as model food systems. Food Chem. 139(1–4), 527–531 (2013).  https://doi.org/10.1016/j.foodchem.2013.01.012 CrossRefGoogle Scholar
  37. 37.
    Anarjan, N., Tan, C.P.: Effects of storage temperature, atmosphere and light on chemical stability of astaxanthin nanodispersions. J. Am. Oil Chem. Soc. 90(8), 1223–1227 (2013).  https://doi.org/10.1007/s11746-013-2270-8 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations