Microwave-Assisted Synthesis and Characterization of an Agriculturally Derived Silver Nanocomposite and Its Derivatives

  • Patricia N. Omo-Okoro
  • Charity E. Maepa
  • Adegbenro P. Daso
  • Jonathan O. OkonkwoEmail author
Original Paper


Nanocomposites and activated carbons are well known and tested effective adsorbents in the areas of water purification and water treatment. However, commercial nanocomposites and activated carbons are expensive; therefore, it has become increasingly pertinent to produce affordable nanocomposites and activated carbons. Herein, we report a microwave assisted synthesis of an agriculturally derived nanocomposite, maize tassel-silver (MtAg) nanocomposite. Controlled growth of silver nanoparticles (AgNPs) was formed with maize tassel powder (a lignocellulosic material) and silver nitrate in the ratio (1:1) and optimized microwave conditions of 1 h, 60 °C and 800 W. The MtAg nanocomposite was activated physically and chemically using air at 400 °C and nitrogen at 600 °C and H3PO4 at 500 °C respectively. The activated and non-activated MtAg nanocomposite were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), thermogravimetric analysis, Brunauer–Emmett–Teller (BET) and powder X-ray diffraction (XRD). The irregular sized, spherical shape of AgNPs was confirmed on the newly formed MtAg nanocomposite material using TEM. The XRD patterns showed diffraction peaks at 2θ of about 37.8°, 43.6°, 64.6°, 76.8° and 81.3°. The synthesized MtAg nanocomposite (ratios 1:1, 3:1 and 5:1/maize tassel vs. silver nitrate) exhibited low BET surface areas of 0.42, 0.36 and 0.13 m2/g, respectively. Upon physical activation, a BET surface area (86.27 m2/g) was recorded and this increased significantly to 331 m2/g, with chemical activation. The synthesized MtAg nanocomposite was found to be an improved form of the original tassel material in terms of thermal stability, crystallinity and structural morphology.

Graphical Abstract


Microwave-assisted synthesis Green synthesis Maize tassel-silver nanocomposite Characterization Porous materials 



The authors would like to express their gratitude to Tshwane University of Technology, Arcadia, Pretoria, South Africa for the Ph.D. bursary provided to Mrs. PN Omo-Okoro and to CSIR, Pretoria, for providing a good working environment. Mrs. PN Omo-Okoro is grateful to Miss. Alissa Kriel for her assistance with some of the characterization analyses and to Dr. Alin Ionas for his useful insights during the course of this study.

Compliance with Ethical Standards

Conflict of interest

There is no financial or commercial conflict of interests to be declared by the authors.


  1. 1.
    Goldstein, N., Greenlee, L.F.: Influence of synthesis parameters on iron nanoparticle size and zeta potential. J. Nanopart. Res. 14(4), 760 (2012). CrossRefGoogle Scholar
  2. 2.
    Virkutyte, J., Varma, R.S.: Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2(5), 837–846 (2011). CrossRefGoogle Scholar
  3. 3.
    Singh, P.K., Jairath, G., Ahlawat, S.S.: Nanotechnology: a future tool to improve quality and safety in meat industry. J. Food Sci. Technol. 53(4), 1739–1749 (2016). CrossRefGoogle Scholar
  4. 4.
    Xu, P., Han, X., Zhang, B., Du, Y., Wang, H.-L.: Multifunctional polymer–metal nanocomposites via direct chemical reduction by conjugated polymers. Chem. Soc. Rev. 43(5), 1349–1360 (2014). CrossRefGoogle Scholar
  5. 5.
    Li, S.-M., Jia, N., Ma, M.-G., Zhang, Z., Liu, Q.-H., Sun, R.-C.: Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr. Polym. 86(2), 441–447 (2011). CrossRefGoogle Scholar
  6. 6.
    Ortega, F., Giannuzzi, L., Arce, V.B., García, M.A.: Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocoll. 70, 152–162 (2017). CrossRefGoogle Scholar
  7. 7.
    Saifuddin, N., Nian, C., Zhan, L., Ning, K.: Chitosan-silver nanoparticles composite as point-of-use drinking water filtration system for household to remove pesticides in water. Asian J. Biochem. 6(2), 142–159 (2011). CrossRefGoogle Scholar
  8. 8.
    Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O.: Per- and polyfluoroalkyl substances: ubiquity, levels, toxicity and their removal from aqueous media using novel agro-based adsorbents. In: Accepted Abstract and Oral Presentation for the 38th International Symposium on Halogenated Persistent Organic Pollutants & 10th International PCB Workshop (DIOXIN 2018), Kraków, Poland (2018)Google Scholar
  9. 9.
    Zvinowanda, C.M., Okonkwo, J.O., Sekhula, M.M., Anyei, N.M., Sadiku, R.: Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the prescence of alkaline metals. J. Hazard. Mater. 164, 884–891 (2009). CrossRefGoogle Scholar
  10. 10.
    Zvinowanda, C., Okonkwo, J., Agyei, N., Staden, M.v., Jordaan, W., Kharebe, B.: Recovery of lead (II) from aqueous solutions by Zea mays tassel biosorption. Am. J. Biochem. Biotechnol. 6(1), 1–10 (2010)CrossRefGoogle Scholar
  11. 11.
    Moyo, M., Chikazaza, L., Nyamunda, B.C., Guyo, U.: Adsorption batch studies on the removal of Pb (II) using maize tassel based activated carbon. J. Chem. (2013). CrossRefGoogle Scholar
  12. 12.
    Moyo, M., Okonkwo, J.O., Agyei, N.M.: An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzyme Microb. Technol. 56, 28–34 (2014). CrossRefGoogle Scholar
  13. 13.
    Li, S., Chen, H., Cui, D., Li, J., Zhang, Z., Wang, Y., Tang, T.: Structure and properties of multi-walled carbon nanotubes/polyethylene nanocomposites synthesized by in situ polymerization with supported Cp2ZrCl2 catalyst. Polym. Compos. 31(3), 507–515 (2010). CrossRefGoogle Scholar
  14. 14.
    Lidström, P., Tierney, J., Wathey, B., Westman, J.: Microwave assisted organic synthesis—a review. Tetrahedron 57(45), 9225–9283 (2001). CrossRefGoogle Scholar
  15. 15.
    Liu, Q.-S., Zheng, T., Wang, P., Guo, L.: Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crops Prod. 31(2), 233–238 (2010). CrossRefGoogle Scholar
  16. 16.
    Joseph, C., Quek, K., Daud, W., Moh, P.: Physical Activation of Oil Palm Empty Fruit Bunch Via CO2 Activation Gas for CO2 Adsorption. In: Paper Presented at the IOP Conference Series: Materials Science and Engineering (2017). CrossRefGoogle Scholar
  17. 17.
    Korichi, S., Elias, A., Mefti, A.: Characterization of smectite after acid activation with microwave irradiation. Appl. Clay Sci. 42(3), 432–438 (2009). CrossRefGoogle Scholar
  18. 18.
    Korichi, S., Elias, A., Mefti, A., Bensmaili, A.: The effect of microwave irradiation and conventional acid activation on the textural properties of smectite: comparative study. Appl. Clay Sci. 59, 76–83 (2012). CrossRefGoogle Scholar
  19. 19.
    Motshekga, S.C., Ray, S.S., Onyango, M.S., Momba, M.N.: Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J. Hazard. Mater. 262, 439–446 (2013). CrossRefGoogle Scholar
  20. 20.
    Motshekga, S.C., Ray, S.S., Onyango, M.S., Momba, M.N.: Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl. Clay Sci. 114, 330–339 (2015). CrossRefGoogle Scholar
  21. 21.
    Demiral, H., Demiral, İ, Karabacakoğlu, B., Tümsek, F.: Production of activated carbon from olive bagasse by physical activation. Chem. Eng. Res. Des. 89(2), 206–213 (2011). CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Reinoso, F., Molina-Sabio, M., Gonzalez, M.: The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33(1), 15–23 (1995). CrossRefGoogle Scholar
  23. 23.
    Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006)CrossRefGoogle Scholar
  24. 24.
    Radhika, M., Palanivelu, K.: Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—kinetics and isotherm analysis. J. Hazard. Mater. 138(1), 116–124 (2006). CrossRefGoogle Scholar
  25. 25.
    Daud, W.M.A., Ali, W.S.W.: Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour. Technol. 93, 63–69 (2004). CrossRefGoogle Scholar
  26. 26.
    Dias, J.M., Alvim-Ferraz, M.C., Almeida, M.F., Rivera-Utrilla, J., Sánchez-Polo, M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85(4), 833–846 (2007). CrossRefGoogle Scholar
  27. 27.
    Chang, K.-L., Hsieh, J.-F., Ou, B.-M., Chang, M.-H., Hseih, W.-Y., Lin, J.-H., et al.: Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol A) using activated carbon from rice straw agricultural waste. Sep. Sci. Technol. 47(10), 1514–1521 (2012). CrossRefGoogle Scholar
  28. 28.
    Mohan, D., Pittman, C.U.: Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J. Hazard. Mater. 137(2), 762–811 (2006). CrossRefGoogle Scholar
  29. 29.
    Oluwafemi, O.S., Vuyelwa, N., Scriba, M., Songca, S.P.: Green controlled synthesis of monodispersed, stable and smaller sized starch-capped silver nanoparticles. Mater. Lett. 106, 332–336 (2013). CrossRefGoogle Scholar
  30. 30.
    Cheviron, P., Gouanvé, F., Espuche, E.: Preparation, characterization and barrier properties of silver/montmorillonite/starch nanocomposite films. J. Membr. Sci. 497, 162–171 (2016). CrossRefGoogle Scholar
  31. 31.
    Ji, N., Liu, C., Zhang, S., Xiong, L., Sun, Q.: Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT-Food Sci. Technol. 74, 311–318 (2016). CrossRefGoogle Scholar
  32. 32.
    Jung, J., Raghavendra, G.M., Kim, D., Seo, J.: One-step synthesis of starch-silver nanoparticle solution and its application to antibacterial paper coating. Int. J. Biol. Macromol. 107, 2285–2290 (2018). CrossRefGoogle Scholar
  33. 33.
    Maepa, C., Okonkwo, J., Ray, S., Wesley-Smith, J., Ramontja, J.: Surface characterization of maize tassel-silver nanoparticles. In: Oral Presentation at the Microscopy Society of South Africa (MSSA) Conference, 2012, Cape Town, South Africa (2012).
  34. 34.
    Moreno-Castilla, C., Carrasco-Marín, F., Lopez-Ramon, M.V., Alvarez-Merino, M.A.: Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon 39(9), 1415–1420 (2001). CrossRefGoogle Scholar
  35. 35.
    Pal, J., Deb, M.K., Deshmukh, D.K., Verma, D.: Removal of methyl orange by activated carbon modified by silver nanoparticles. Appl. Water Sci. 3(2), 367–374 (2013). CrossRefGoogle Scholar
  36. 36.
    Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O.: A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies. Environ. Technol. Innov. 9, 100–114 (2018). CrossRefGoogle Scholar
  37. 37.
    Sing, K.S., Williams, R.T.: Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2004). CrossRefGoogle Scholar
  38. 38.
    WHO. (2011). Guidelines for drinking-water quality. In: World Health Organization (WHO), 4th edn., vol. 38, pp. 104–108Google Scholar
  39. 39.
    Djerahov, L., Vasileva, P., Karadjova, I., Kurakalva, R.M., Aradhi, K.K.: Chitosan film loaded with silver nanoparticles—sorbent for solid phase extraction of Al (III), Cd (II), Cu (II), Co (II), Fe (III), Ni (II), Pb (II) and Zn (II). Carbohydr. Polym. 147, 45–52 (2016). CrossRefGoogle Scholar
  40. 40.
    Regiel, A., Irusta, S., Kyzioł, A., Arruebo, M., Santamaria, J.: Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24(1), 015101 (2012)CrossRefGoogle Scholar
  41. 41.
    Ito, T., et al.: Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 20(16), 6940–6945 (2004). MathSciNetCrossRefGoogle Scholar
  42. 42.
    Fischer, K., Schmidt, M.: Pitfalls and novel applications of particle sizing by dynamic light scattering. Biomaterials 98, 79–91 (2016). CrossRefGoogle Scholar
  43. 43.
    Fissan, H., et al.: Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods 6(18), 7324–7334 (2014). CrossRefGoogle Scholar
  44. 44.
    Ahmad, M.B., Tay, M.Y., Shameli, K., Hussein, M.Z., Lim, J.J.: Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int. J. Mol. Sci. 12(8), 4872–4884 (2011). CrossRefGoogle Scholar
  45. 45.
    Zhang, Y., Gao, X., Zhi, L., Liu, X., Jiang, W., Sun, Y., Yang, J.: The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J. Inorg. Biochem. 130, 74–83 (2014). CrossRefGoogle Scholar
  46. 46.
    Olorundare, O.F., Msagati, T.A.M., Krause, R.W.M., Okonkwo, J.O., Mamba, B.B.: Activated carbon from lignocellulosic waste residues: effect of activating agent on porosity characteristics and use as adsorbents for organic species. Water Air Soil Pollut. 225(3), 1876 (2014)CrossRefGoogle Scholar
  47. 47.
    Qiu, L., Chen, W., Qu, B.: Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites. Polymer 47(3), 922–930 (2006). CrossRefGoogle Scholar
  48. 48.
    Yu, H.-Y., Qin, Z.-Y., Sun, B., Yan, C.F., Yao, J.-M.: One-pot green fabrication and antibacterial activity of thermally stable corn-like CNC/Ag nanocomposites. J. Nanopart. Res. 16(1), 2202 (2014). CrossRefGoogle Scholar
  49. 49.
    George, J.J., Bhowmick, A.K.: Ethylene vinyl acetate/expanded graphite nanocomposites by solution intercalation: preparation, characterization and properties. J. Mater. Sci. 43(2), 702–708 (2008). CrossRefGoogle Scholar
  50. 50.
    Chrissafis, K., Pavlidou, E., Paraskevopoulos, K.M., Beslikas, T., Nianias, N., Bikiaris, D.: Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite. J. Therm. Anal. Calorim. 105(1), 313–323 (2010). CrossRefGoogle Scholar
  51. 51.
    Chrissafis, K., Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523(1), 1–24 (2011). CrossRefGoogle Scholar
  52. 52.
    Ye, L., Wu, Q., Qu, B.: Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polym. Degrad. Stab. 94(5), 751–756 (2009). CrossRefGoogle Scholar
  53. 53.
    Guo, J., Lua, A.C.: Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants. Mater. Lett. 55(5), 334–339 (2002). CrossRefGoogle Scholar
  54. 54.
    Joseph, C., Yii, F.: Textural and chemical characterisation of activated carbons prepared from rice husk (Oryza sativa) using a two-stage activation process. J. Eng. Sci. Technol. 3(3), 234–242 (2008)Google Scholar
  55. 55.
    Zhang, T., Walawender, W.P., Fan, L., Fan, M., Daugaard, D., Brown, R.: Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem. Eng. J. 105(1), 53–59 (2004). CrossRefGoogle Scholar
  56. 56.
    Fagbayigbo, B.O., Opeolu, B.O., Fatoki, O.S., Akenga, T.A., Olatunji, O.S.: Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter. Environ. Sci. Pollut. Res. 24(14), 13107–13120 (2017). CrossRefGoogle Scholar
  57. 57.
    Olorundare, O., Krause, R., Okonkwo, J., Mamba, B.: Potential application of activated carbon from maize tassel for the removal of heavy metals in water. Phys. Chem. Earth A/B/C 50, 104–110 (2012). CrossRefGoogle Scholar
  58. 58.
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015). CrossRefGoogle Scholar
  59. 59.
    Maepa, C., Jayaramudu, J., Okonkwo, J., Ray, S., Sadiku, E., Ramontja, J.: Extraction and characterization of natural cellulose fibers from maize tassel. Int. J. Polym. Anal. Charact. 20(2), 99–109 (2015). CrossRefGoogle Scholar
  60. 60.
    Deng, S., Nie, Y., Du, Z., Huang, Q., Meng, P., Wang, B., et al.: Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. J. Hazard. Mater. 282, 150–157 (2015). CrossRefGoogle Scholar
  61. 61.
    Rahman, M., Peldszus, S., Anderson, W.: Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res. 50, 218–240 (2014). CrossRefGoogle Scholar
  62. 62.
    Abreu, A.S., Oliveira, M., de Sá, A., Rodrigues, R.M., Cerqueira, M.A., Vicente, A.A., Machado, A.: Antimicrobial nanostructured starch based films for packaging. Carbohydr. Polym. 129, 127–134 (2015). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Environmental, Water & Earth Sciences, Faculty of ScienceTshwane University of TechnologyPretoriaSouth Africa
  2. 2.National Centre for Nano-Structured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations