Steam Explosion of Beech Wood: Effect of the Particle Size on the Xylans Recovery

  • E. Simangunsong
  • I. Ziegler-DevinEmail author
  • L. Chrusciel
  • P. Girods
  • N. J. Wistara
  • N. Brosse
Original Paper


In this work, the effect of particle size and severity factors was investigated to find the optimum condition of steam explosion pretreatment on xylan recovery of beech wood. The beech wood particles with sizes of 0.16, 1, or 2 mm were steamed at 150–210 °C for 2.5–15 min before an explosive decompression. The results showed that the maximum xylan recovery was about 10% w/w wood with low concentrations of the inhibitors, which were obtained when the particle size is 1 mm and R0 = 3.65 (190 °C, 10 min). The smallest particle size may result in overcooking of biomass, leads to easily and high degradation of hemicelluloses sugars, whereas the largest particle sizes may result in incomplete autohydrolysis in biomass and lower extractability of hemicelluloses sugars. The obtained optimum condition for xylan recovery will improve the subsequent utilization (such as in food industry and other chemical products), prior to subsequent transformation of steam explosion pretreated wood (bioethanol and pellet).

Graphical Abstract


Steam explosion pretreatment Beech wood Severity factor Biomass particle size Xylan recovery 



We acknowledge the financial support of LERMAB which supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-12-LABXARBRE-01) and Double Degree Master Program of Indonesia Ministry of Education and Culture.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jacquet, N., Maniet, G., Vanderghem, C., Delvigne, F., Richel, A.: Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind. Eng. Chem. Res. 54, 2593–2598 (2015). CrossRefGoogle Scholar
  2. 2.
    Mason, W.H.: Process and apparatus for disintegration of wood and the like (1926)Google Scholar
  3. 3.
    Akinlabi, E.T., Anane-Fenin, K., Akwada, D.R.: Bamboo as fuel. In: Bamboo: The Multipurpose Plant, pp. 149–178. Cham, Springer (2017)CrossRefGoogle Scholar
  4. 4.
    Arenas-Cárdenas, P., López-López, A., Moeller-Chávez, G.E., Léon-Becerril, E.: Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste Biomass Valoriz. 8, 161–181 (2017). CrossRefGoogle Scholar
  5. 5.
    Gong, L., Huang, L., Zhang, Y.: Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity. J. Agric. Food Chem. 60, 7177–7184 (2012). CrossRefGoogle Scholar
  6. 6.
    Lam, P.S., Lam, P.Y., Sokhansanj, S., Bi, X.T., Lim, C.J.: Mechanical and compositional characteristics of steam-treated Douglas fir (Pseudotsuga menziesii L.) during pelletization. Biomass Bioenergy 56, 116–126 (2013). CrossRefGoogle Scholar
  7. 7.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005). CrossRefGoogle Scholar
  8. 8.
    Grous, W.R., Converse, A.O., Grethlein, H.E.: Effect of steam explosion pretreatment on pore size and enzymatic hydroxlysis of poplar. Enzyme Microb. Technol. 8, 274–280 (1986)CrossRefGoogle Scholar
  9. 9.
    Silva, T.A.L., Zamora, H.D.Z., Varão, L.H.R., Prado, N.S., Baffi, M.A., Pasquini, D.: Effect of steam explosion pretreatment catalysed by organic acid and alkali on chemical and structural properties and enzymatic hydrolysis of sugarcane bagasse. Waste Biomass Valoriz. 0, 1–11 (2017). CrossRefGoogle Scholar
  10. 10.
    Ballesteros, I., Oliva, J.M., Navaro, A.A., González, A., Carrasco, J., Ballesteros, M.: Effect of chip size on steam explosion pretreatment of softwood. Appl. Biochem. Biotechnol. 84–86, 97–110 (2000)CrossRefGoogle Scholar
  11. 11.
    Kumar, L., Chandra, R., Saddler, J.: Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnol. Bioeng. 108, 2300–2311 (2011). CrossRefGoogle Scholar
  12. 12.
    Liu, Z., Qin, L., Pang, F., Jin, M., Li, B., Kang, Y., Dale, B.E., Yuan, Y.: Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Ind. Crop. Prod. 44, 176–184 (2013). CrossRefGoogle Scholar
  13. 13.
    Jiang, S., Guo, N.: The steam explosion pretreatment and enzymatic hydrolysis of wheat bran. Energy Sources 38, 295–299 (2016). CrossRefGoogle Scholar
  14. 14.
    Adapa, P., Tabil, L., Schoenau, G.: Grinding performance and physical properties of non-treated and steam exploded barley, canola, oat and wheat straw. Biomass Bioenergy 35, 549–561 (2011). CrossRefGoogle Scholar
  15. 15.
    Nabarlazt, D., Farriol, X., Montane, D.: Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharide. Ind. Eng. Chem. Res. 43, 4124–4131 (2004). CrossRefGoogle Scholar
  16. 16.
    Garrote, G., Domınguez, H., Parajo, J.C.: Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J. Chem. Technol. Biotechnol. 74, 1101–1109 (1999)CrossRefGoogle Scholar
  17. 17.
    Chornet, E., Overend, R.P.: Phenomenological kinetics and reaction engineering aspects of steam/aqueous treatments. In: Proceeding of the International Workshop on Steam Explosion Techniques: Fundamentals and Industrial Applications. pp. 21–58. Gordon and Breach Science Publisher (1988)Google Scholar
  18. 18.
    Xiao, L.-P., Song, G.-Y., Sun, R.-C.: Effect of hydrothermal processing on hemicellulose structure. In: Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass. pp. 45–93. Springer (2017)Google Scholar
  19. 19.
    Monavari, S., Galbe, M., Zacchi, G.: Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresour. Technol. 100, 6312–6316 (2009). CrossRefGoogle Scholar
  20. 20.
    Cullis, I.F., Saddler, J.N., Mansfield, S.D.: Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnol. Bioeng. 85, 413–421 (2004). CrossRefGoogle Scholar
  21. 21.
    Demartini, J.D., Foston, M., Meng, X., Jung, S., Kumar, R., Ragauskas, A.J., Wyman, C.E.: How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars. Biotechnol. Biofuels 8, 1–16 (2015). CrossRefGoogle Scholar
  22. 22.
    Agreste Lorraine: La récolte de bois récoltés en Lorraine en 2014 (2015)Google Scholar
  23. 23.
    Institut Technologique FCBA (Forêt Cellulose Bois-construction Ameublement): Mémento FCBA (2016)Google Scholar
  24. 24.
    Fengel, D., Wegener, G.: Wood: Chemistry, Ultrastructure, Reactions. De Grutyter, Berlin (1989)Google Scholar
  25. 25.
    Demirbas, A.: Biofuels from beech wood via thermochemicals conversion methods. Energy Sources A 32, 346–354 (2010). CrossRefGoogle Scholar
  26. 26.
    Yildiz, U.C., Yildiz, S., Gezer, E.D.: Mechanical and chemical behavior of beech wood modified by heat. Wood Fiber Sci. 37, 456–461 (2005)Google Scholar
  27. 27.
    Bodirlau, R., Teaca, C.A., Spiridon, I.: Chemical modification of beech wood: effect on thermal stability. BioResources 3, 789–800 (2008). CrossRefGoogle Scholar
  28. 28.
    Heitz, M., Capek-Ménard, E., Koeberle, P.G., Gagné, J., Chornet, E., Overend, R.P., Taylor, J.D., Yu, E.: Fractionation of Populus tremuloides at the pilot plant scale: optimization of steam pretreatment conditions using the STAKE II technology. Bioresour. Technol. 35, 23–32 (1991). CrossRefGoogle Scholar
  29. 29.
    Tunc, M.S., Van Heiningen, A.R.P.: Hemicellulose extraction of mixed southern hardwood with water at 150 ??C: effect of time. Ind. Eng. Chem. Res. 47, 7031–7037 (2008). CrossRefGoogle Scholar
  30. 30.
    Stoffel, R.B., Neves, P.V., Felissia, F.E., Ramos, L.P., Gassa, L.M., Area, M.C.: Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass Bioenergy 107, 93–101 (2017). CrossRefGoogle Scholar
  31. 31.
    Miazek, K., Remacle, C., Richel, A., Goffin, D.: Bioresource Technology Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresour. Technol. 230, 122–131 (2017). CrossRefGoogle Scholar
  32. 32.
    Miazek, K., Remacle, C., Richel, A., Goffin, D.: Effect of enzymatic beech fagus sylvatica wood hydrolysate on Chlorella biomass, fatty acid and pigment production. Appl. Sci. 7, 1–9 (2017). CrossRefGoogle Scholar
  33. 33.
    Lam, P.S., Lam, P.Y., Sokhansanj, S., Lim, C.J., Bi, X.T., Stephen, J.D., Pribowo, A., Mabee, W.E.: Steam explosion of oil palm residues for the production of durable pellets. Appl. Energy 141, 160–166 (2015). CrossRefGoogle Scholar
  34. 34.
    Cantarella, M., Cantarella, L., Gallifuoco, A., Alfani, A.S.F.: Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog. 20, 200–206 (2004). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.LERMAB, EA 4370, Faculté des Sciences et TechnologiesUniversité de LorraineVandoeuvre lès NancyFrance
  2. 2.LERMAB, EA 4370ENSTIBEpinalFrance
  3. 3.Department of Forest Products, Faculty of ForestryBogor Agricultural UniversityBogorIndonesia

Personalised recommendations