Advertisement

Preparation of Nepheline-Based Ceramic Foams from Basalt Tailing and Black Cotton Soil

  • Yanbin Sun
  • Jianzhou Shi
  • Fujie Zhu
  • Xiaoling Tan
  • Wenqing Li
  • Yang Wang
  • Ran Zhao
  • Shaonan Xu
  • Peiping Zhang
  • Cundi Wei
  • Shiding Miao
Original Paper
  • 20 Downloads

Abstract

A type of ultra-light weighted, low-thermally conductive but mechanically strong ceramic foams (CF) were fabricated via the direct foaming method of using basalt tailings (BT) and black cotton soil (BCS) as main components. The sodium hydroxide (NaOH) dissolved in water glass (Na2SiO3) and calcium carbonate (CaCO3) were used as fluxing and foaming agents, respectively. The product was demonstrated to have excellent strength-to-density properties (compressive strength > 1.82 MPa, density < 0.57 g/cm3) and a low thermal conductivity (0.057 W/m·K), which meets standards of ASTM C552-14 (Grade 24) or GB/T33500-2017 (Grade L). Factors that affect the physicochemical (bulk density, apparent density, and water absorption) and mechanical properties were investigated, which include dosages of BT, NaOH, and CaCO3. Optimum parameters were found as sintering temperature 850 °C, reaction time 45 min, and dosage of BT/(BT + BCS) = 70% wt., NaOH = 13% wt. versus the total weight of BT and BCS (w(BT + BCS)), and foaming agent CaCO3 = 0.1% wt. versus w(BT + BCS). The crystalline phase in the foamed ceramics was confirmed as nepheline which was produced by desilication of orthoclase or plagioclase with presence of NaOH. This direct foaming method of using the BT + BCS system was proven to be an efficient way to prepare foamed ceramics.

Keywords

Ceramic foams Preparation Black cotton soil Basalt tailing Direct foaming method 

Notes

Acknowledgements

We acknowledge the financial supports by the Province/Jilin University co-construction project - funds for new materials - (SXGJSF2017-3), National Natural Science Foundation of China (U1607122, 51874145), Qinghai Basic Program under Grant (2017-ZJ-705), and basalt original rock and product performance testing project (3R218C562416).

References

  1. 1.
    Beall, G.H., Rittler, H.L.: Basalt glass ceramics. Am. Ceram. Soc. Bull. 55, 579–582 (1976)Google Scholar
  2. 2.
    Nishihora, R.K., Rachadel, P.L., Quadri, M.G.N., Hotza, D.: A. Ceramic foams by powder processing. J. Eur. Ceram. Soc. 18, 1339–1350 (1998).  https://doi.org/10.1016/S0955-2219(98)00063-6 CrossRefGoogle Scholar
  3. 3.
    Cao, J., Rambo, C.R., Sieber, H.: Preparation of Porous Al2O3-Ceramics by Biotemplating of Wood. J. Porous Mater. 11, 163–172 (2004).  https://doi.org/10.1023/B:JOPO.0000038012.58705.c9 CrossRefGoogle Scholar
  4. 4.
    Kovářík, T., Křenek, T., Rieger, D., Pola, M., Říha, J., Svoboda, M., Beneš, J., Šutta, P., Bělský, P., Kadlec, J.: Synthesis of open-cell ceramic foam derived from geopolymer precursor via replica technique. Mater. Lett. 209, 497–500 (2017).  https://doi.org/10.1016/j.matlet.2017.08.081 CrossRefGoogle Scholar
  5. 5.
    Jo, I.-H., Shin, K.-H., Soon, Y.-M., Koh, Y.-H., Lee, J.-H., Kim, H.-E.: Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template. Mater. Lett. 63, 1702–1704 (2009).  https://doi.org/10.1016/j.matlet.2009.05.017 CrossRefGoogle Scholar
  6. 6.
    Rincon, A., Giacomello, G., Pasetto, M., Bernardo, E.: Novel ‘inorganic gel casting’ process for the manufacturing of glass foams. J. Eur. Ceram. Soc. 37, 2227–2234 (2017).  https://doi.org/10.1016/j.jeurceramsoc.2017.01.012 CrossRefGoogle Scholar
  7. 7.
    Nishihora, R.K., Rachadel, P.L., Quadri, M.G.N., Hotza, D.: Manufacturing porous ceramic materials by tape casting-A review. J. Eur. Ceram. Soc. 38, 988–1001 (2017).  https://doi.org/10.1016/j.jeurceramsoc.2017.11.047 CrossRefGoogle Scholar
  8. 8.
    Hammel, E.C., Ighodaro, O.L.R., Okoli, O.I.: Processing and properties of advanced porous ceramics: an application based review. Ceram. Int. 40, 15351–15370 (2014).  https://doi.org/10.1016/j.ceramint.2014.06.095 CrossRefGoogle Scholar
  9. 9.
    Arcos, D., Vallet-Regí, M.: Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 6, 2874–2888 (2010).  https://doi.org/10.1016/j.actbio.2010.02.012 CrossRefGoogle Scholar
  10. 10.
    Bai, J., Yang, X., Xu, S., Jing, W., Yang, J.: Preparation of foam glass from waste glass and fly ash. Mater. Lett. 136, 52–54 (2014).  https://doi.org/10.1016/j.matlet.2014.07.028 CrossRefGoogle Scholar
  11. 11.
    Fernandes, H., Tulyaganov, D., Ferreira, J.: Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceram. Int. 35, 229–235 (2009).  https://doi.org/10.1016/j.ceramint.2007.10.019 CrossRefGoogle Scholar
  12. 12.
    Zhang, R., Feng, J., Cheng, X., Gong, L., Li, Y., Zhang, H.: Porous thermal insulation materials derived from fly ash using a foaming and slip casting method. Energy Build. 81, 262–267 (2014).  https://doi.org/10.1016/j.enbuild.2014.06.028 CrossRefGoogle Scholar
  13. 13.
    Chen, X., Lu, A., Qu, G.: Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent. Ceram. Int. 39, 1923–1929 (2013).  https://doi.org/10.1016/j.ceramint.2012.08.042 CrossRefGoogle Scholar
  14. 14.
    Wang, H., Feng, K., Zhou, Y., Sun, Q., Shi, H.: Effects of Na2B4O7·5H2O on the properties of foam glass from waste glass and titania-bearing blast furnace slag. Mater. Lett. 132, 176–178 (2014).  https://doi.org/10.1016/j.matlet.2014.06.018 CrossRefGoogle Scholar
  15. 15.
    Ding, L., Ning, W., Wang, Q., Shi, D., Luo, L.: Preparation and characterization of glass–ceramic foams from blast furnace slag and waste glass. Mater. Lett. 141, 327–329 (2015).  https://doi.org/10.1016/j.matlet.2014.11.122 CrossRefGoogle Scholar
  16. 16.
    Ding, L., Ning, W., Wang, Q., Shi, D., Luo, L.: Preparation of glass-ceramic foams from the municipal solid waste slag produced by plasma gasification process. Mater. Lett. 128, 68–70 (2014).  https://doi.org/10.1016/j.matlet.2014.04.097 CrossRefGoogle Scholar
  17. 17.
    Xi, X., Xu, L., Shui, A., Wang, Y., Naito, M.: Effect of silicon carbide particle size and CaO content on foaming properties during firing and microstructure of porcelain ceramics. Ceram. Int. 40, 12931–12938 (2014).  https://doi.org/10.1016/j.ceramint.2014.04.153 CrossRefGoogle Scholar
  18. 18.
    Kayali, O.: Fly ash lightweight aggregates in high performance concrete. Constr. Build. Mater. 22, 2393–2399 (2008).  https://doi.org/10.1016/j.conbuildmat.2007.09.001 CrossRefGoogle Scholar
  19. 19.
    Marangoni, M., Secco, M., Parisatto, M., Artioli, G., Bernardo, E., Colombo, P., Altlasi, H., Binmajed, M., Binhussain, M.: Cellular glass-ceramics from a self foaming mixture of glass and basalt scoria. J. Non-Cryst. Solids. 403, 38–46 (2014).  https://doi.org/10.1016/j.jnonclysol.2014.06.016 CrossRefGoogle Scholar
  20. 20.
    Zhu, M., Ji, R., Li, Z., Wang, H., Liu, L., Zhang, Z.: Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr. Build. Mater. 112, 398–405 (2016).  https://doi.org/10.1016/j.conbuildmat.2016.02.183 CrossRefGoogle Scholar
  21. 21.
    Jamshaid, H., Mishra, R.: A green material from rock: basalt fiber-a review. J. Text. I. 107, 923–937 (2016).  https://doi.org/10.1080/00405000.2015.1071940 CrossRefGoogle Scholar
  22. 22.
    Swink, M.. Continuous filament basalt a unique fiber capable of leadership in high temperature applications, in Techtextil North America Symposium Atlanta, GA, USA, (2002)Google Scholar
  23. 23.
    Fiore, V., Scalici, T., Di Bella, G., Valenza, A.: A review on basalt fibre and its composites. Compos. Part B-Eng. 74, 74–94 (2015)CrossRefGoogle Scholar
  24. 24.
    Khater, G.A., Abdel-Motelib, A., El Manawi, A.W., Abu Safiah, M.O.: Glass-ceramics materials from basaltic rocks and some industrial waste. J. Non-Cryst. Solids. 358, 1128–1134 (2012).  https://doi.org/10.1016/j.jnoncrysol.2012.02.010 CrossRefGoogle Scholar
  25. 25.
    Abdel-Hameed, S.A.M., Bakr, I.M.: Effect of alumina on ceramic properties of cordierite glass–ceramic from basalt rock. J. Eur. Ceram. Soc. 27, 1893–1897 (2007).  https://doi.org/10.1016/j.jeurceramsoc.2006.05.016 CrossRefGoogle Scholar
  26. 26.
    Yilmaz, S., Özkan, O.T., Günay, V.: Crystallization kinetics of basalt glass. Ceram. Int. 22, 477–481 (1996).  https://doi.org/10.1016/0272-8842(95)00118-2 CrossRefGoogle Scholar
  27. 27.
    Cetin, S., Marangoni, M., Bernardo, E.: Lightweight glass–ceramic tiles from the sintering of mining tailings. Ceram. Int. 41, 5294–5300 (2015).  https://doi.org/10.1016/j.ceramint.2014.12.049 CrossRefGoogle Scholar
  28. 28.
    Yılmaz, S., Bayrak, G., Sen, S., Sen, U.: Structural characterization of basalt-based glass–ceramic coatings. Mater. Design. 27, 1092–1096 (2006).  https://doi.org/10.1016/j.matdes.2005.04.004 CrossRefGoogle Scholar
  29. 29.
    Miao, S., Shen, Z., Wang, X., Luo, F., Huang, X., Wei, C.: Stabilization of highly expansive black cotton soils by means of geopolymerization. J. Mater. Civil Eng. 29, 04017170 (2017)CrossRefGoogle Scholar
  30. 30.
    Bhargavi, P., Jyothi, S.: Applying naive bayes data mining technique for classification of agricultural land soils. Int. J. Comput. Sci. Netw Secur 9, 117–122 (2009)Google Scholar
  31. 31.
    Gadre, A.D., Chandrasekaran, V.S.: Swelling of black cotton soil using centrifuge modeling. J. Geotech. Eng. 120, 914–919 (1994)CrossRefGoogle Scholar
  32. 32.
    Mehta, K.S., Sonecha, R.J., Daxini, P.D., Ratanpara, P.B., Gaikwad, K.S.: Analysis of engineering properties of black cotton soil & stabilization using by lime. Int. J. Eng. Res. Appl. 4, 25–32 (2014)Google Scholar
  33. 33.
    Singh, S.K., Gupta, P.K.: Critical review of ground improvement techniques for highways. Indian Highw 30, 5–14 (2002)Google Scholar
  34. 34.
    Sparks, R.S.J.: The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geoth. Res. 3, 1–37 (1978).  https://doi.org/10.1016/0377-0273(78)90002-1 CrossRefGoogle Scholar
  35. 35.
    EN, U.: Determination of water absorption, apparent porosity, apparent relative density and bulk density ISO 10545-3 (1995)Google Scholar
  36. 36.
    Lu, X., Caps, R., Fricke, J., Alviso, C.T., Pekala, R.W.: Correlation between structure and thermal conductivity of organic aerogels. J. Non-Cryst. Solids. 188, 226–234 (1995).  https://doi.org/10.1016/0022-3093(95)00191-3 CrossRefGoogle Scholar
  37. 37.
    Liang, C., et al.: Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces. 9, 29950 (2017).  https://doi.org/10.1021/acsami.7b07735 CrossRefGoogle Scholar
  38. 38.
    Hajimohammadi, A., Ngo, T., Mendis, P., Nguyen, T., Kashani, A., van Deventer, J.S.J.: Pore characteristics in one-part mix geopolymers foamed by H2O2: the impact of mix design. Mater. Design. 130, 381–391 (2017).  https://doi.org/10.1016/j.matdes.2017.05.084 CrossRefGoogle Scholar
  39. 39.
    Hajimohammadi, A., Ngo, T., Mendis, P.: Enhancing the strength of pre-made foams for foam concrete applications. Cement. Concrete Comp. 87, 164–171 (2018).  https://doi.org/10.1016/j.cemconcomp.2017.12.014 CrossRefGoogle Scholar
  40. 40.
    Ivanov, K.S.: Study of sodium silicate system firing during glass ceramic foam preparation. Refract. Ind. Ceram. 56, 621–625 (2016).  https://doi.org/10.1007/s11148-016-9900-2 CrossRefGoogle Scholar
  41. 41.
    Kumar, P., Topin, F.: State-of-the-art of pressure drop in open-cell porous foams: review of experiments and correlations. J. Fluids Eng. 139, 111401–111401 (2017).  https://doi.org/10.1115/1.4037034 CrossRefGoogle Scholar
  42. 42.
    State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine China National Standardization Administration: 2017. External wall insulation foam ceramic GB/T 33500 – 2017. Standards Press of ChinaGoogle Scholar
  43. 43.
    Marcial, J., Crum, J., Neill, O., McCloy, J.: Nepheline structural and chemical dependence on melt composition. Am. Miner. 101, 266–276 (2016).  https://doi.org/10.2138/am-2016-5370 CrossRefGoogle Scholar
  44. 44.
    Schairer, J.F., Yoder, H.S. Jr.: The nature of residual liquids from crystallization, with data on the system nepheline-diopside-silica. Am. J. Sci. A 258, 273–283 (1960)Google Scholar
  45. 45.
    Platt, R.G., Edgar, A.D.: The system nepheline-diopside-sanidine and its significance to the genesis of melilite- and olivine-bearing alkaline rocks. J. Geol. 80, 224–236 (1972).  https://doi.org/10.1086/627726 CrossRefGoogle Scholar
  46. 46.
    Martín, M.I., Andreola, F., Barbieri, L., Bondioli, F., Lancellotti, I., Rincón, J.M., Romero, M.: Crystallisation and microstructure of nepheline–forsterite glass-ceramics. Ceram. Int. 39, 2955–2966 (2013).  https://doi.org/10.1016/j.ceramint.2012.09.072 CrossRefGoogle Scholar
  47. 47.
    Ionescu, C., Hoeck, V., Ghergari, L.: Electron microprobe analysis of ancient ceramics: a case study from Romania. Appl. Clay Sci. 53, 466–475 (2011).  https://doi.org/10.1016/j.clay.2010.09.009 CrossRefGoogle Scholar
  48. 48.
    Zhang, P., Huang, J., Shen, Z., Wang, X., Luo, F., Zhang, P., Wang, J., Miao, S.: Fired hollow clay bricks manufactured from black cotton soils and natural pozzolans in Kenya. Constr. Build Mater. 141, 435–441 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.03.018 CrossRefGoogle Scholar
  49. 49.
    Otterson, D.A.: On the presence of NaOH in crystalline NaCl. J. Chem. Phys. 33, 227–229 (1960).  https://doi.org/10.1063/1.1731086 CrossRefGoogle Scholar
  50. 50.
    Menkhaus, T., Hrma, P., Li, H.: Kinetics of nepheline crystallization from high-level waste glass. Ceram. Trans. (USA) 107, 461–468 (1999)Google Scholar
  51. 51.
    Schairer, J.F., Bowen, N.L.: The system leucite-diopside-silica. Am. J. Sci. 235, 289–309 (1938)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yanbin Sun
    • 1
  • Jianzhou Shi
    • 1
  • Fujie Zhu
    • 1
  • Xiaoling Tan
    • 2
  • Wenqing Li
    • 3
  • Yang Wang
    • 4
  • Ran Zhao
    • 4
  • Shaonan Xu
    • 1
  • Peiping Zhang
    • 1
  • Cundi Wei
    • 1
  • Shiding Miao
    • 1
  1. 1.Key Laboratory of Automobile Materials of Ministry of Education, Jilin Province Solid Waste Utilization Project Center, School of Materials Science and EngineeringJilin UniversityChangchunChina
  2. 2.Department of Basic SciencesQinghai UniversityXiningChina
  3. 3.Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and ResourcesJilin UniversityChangchunChina
  4. 4.Jilin Province Huayang New Composite Material Co. LtdChangchunChina

Personalised recommendations