Facile Preparation of β-Cyclodextrin-Fe3O4 Magnetic-Brønsted Acidic Ionic Liquid for Biodiesel Production

  • Fei ChangEmail author
  • Quan Zhou
Original Paper


Brønsted acidic ionic liquid supported on magnetic Fe3O4 [β-CD-6-Im-(CH2)3-HSO3][HSO4]-Fe3O4 was synthesized successfully, the catalyst was characterized via TGA, FT-IR, XRD, SEM, BET and acidity determination, and used to catalyze the high-acidic untreated Jatropha carcass L. seed crude oil (46.0 mg KOH/g) for biodiesel production in a single pot. The results showed that 94.70% yield of FAME was obtained under the optimized reaction conditions of temperature of 130 °C, 10:1 molar ratio of methanol to oil, 3 wt% of catalyst dosage, 3 h reaction time. In addition, the catalyst activity was not significantly decreased after five recycles.


β-Cyclodextrin Acidic ionic liquids Biodiesel Fe3O4 Magnetism 



This work is financially supported by Guizhou Provincial, State, University S&T Technology Joint Fund Program (Nos. LH [2015]7762).


  1. 1.
    Mahmudul, H.M., Hagos, F.Y., Mamat, R., Adam, A.A., Ishak, W.F.W., Alenezi, R.: Production, characterization and performance of biodiesel as an alternative fuel in diesel engines, A review, Renew. Sustain. Energy Rev. 72, 497–509 (2017)CrossRefGoogle Scholar
  2. 2.
    Mardhiah, H.H., Ong, H.C., Masjuki, H.H., Lim, S., Lee, H.V.: Review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils, Renew. Sustain. Energy Rev. 67, 1225–1236 (2017)CrossRefGoogle Scholar
  3. 3.
    Jeevahan, J., Mageshwaran, G., Joseph, G.B., Raj, R.D., Kannan, R.T.: Various strategies for reducing NOx emissions of biodiesel fuel used in conventional diesel engines, A review. Chem. Eng. Commun. 204(10), 1202–1223 (2017)CrossRefGoogle Scholar
  4. 4.
    Chang, F., Zhou, Q., Zhou, L.: Fuel properties of biodiesel from nonedible herbaceous oil feedstocks: Leonurus artemisia L. and Peganum harmala L. Energy Sources, Part A Recover Util. Environ. Eff. 39(17), 1879–1885 (2017)Google Scholar
  5. 5.
    Ishak, Z.I., Sairi, N.A., Alias, Y., Aroua, M.K.T., Yusoff, R.: A review of ionic liquids as catalysts for transesterification reactions of biodiesel and glycerol carbonate production. Catal. Rev. 59(1), 44–93 (2017)CrossRefGoogle Scholar
  6. 6.
    Chang, F., Zhou, Q., Pan, H., Liu, X.F., Zhang, H., Xue, W., Yang, S.: Solid mixed-metal-oxide catalysts for biodiesel production, a review. Energy Technol. 2(11), 865–873 (2014)CrossRefGoogle Scholar
  7. 7.
    Aransiola, E.F., Ojumu, T.V., Oyekola, O.O., Madzimbamuto, T.F., Ikhu-Omoregbe, D.I.O.: A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61, 276–297 (2014)CrossRefGoogle Scholar
  8. 8.
    Mansir, N., Taufiq-Yap, Y.H., Rashid, U., Lokman, I.M.: Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production, a review. Energy Convers. Manag. 141, 171–182 (2017)CrossRefGoogle Scholar
  9. 9.
    Troter, D.Z., Todorović, Z.B., Đokić-Stojanović, D.R., Stamenković, O.S., Veljković, V.B.: Application of ionic liquids and deep eutectic solvents in biodiesel production: a review, Renew. Sustain. Energy Rev. 61, 473–500 (2016)CrossRefGoogle Scholar
  10. 10.
    Pan, H., Liu, X., Zhang, H., Yang, K., Huang, S., Yang, S.: Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion. Renew. Energy 107, 245–252 (2017)CrossRefGoogle Scholar
  11. 11.
    Mahlambi, M.M., Malefetse, T.J., Mamba, B.B.: and Krause, R.W. β-Cyclodextrin-ionic liquid polyurethanes for the removal of organic pollutants and heavy metals from water: synthesis and characterization. J. Polym. Res. 17(4), 589–600 (2010)CrossRefGoogle Scholar
  12. 12.
    Mallakpour, S., Javadpour, M.: An innovative strategy for the production of novel magnetite poly (vinyl alcohol) nanocomposite films with double-capped synthesized Fe3O4 nanoparticles with citric acid and vitamin C. Compos. Interfaces 22(9), 867–884 (2015)CrossRefGoogle Scholar
  13. 13.
    Song, X.J., Qin, Z.Q., Wang, X.B., Yang, F., Fang, Q.L.: and C. G. She, β-Cyclodextrin modified with magnetic nanoparticles noncovalently for β-naphthol removal from wastewater. Synth. React Inorg. 46(1), 143–146 (2016)CrossRefGoogle Scholar
  14. 14.
    Kiss, A.A., Dimian, A.C., Rothenberg, G.: Solid acid catalysts for biodiesel production–towards sustainable energy. Adv. Synth. Catal. 348(1-2), 75–81 (2006)CrossRefGoogle Scholar
  15. 15.
    Lou, W.Y., Zong, M.H., Duan, Z.Q.: Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol. 99(18), 8752–8758 (2008)CrossRefGoogle Scholar
  16. 16.
    Wei, Z., Xu, C., Li, B.: Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour. Technol. 100(11), 2883–2885 (2009)CrossRefGoogle Scholar
  17. 17.
    Chang, F., Zhou, Q., Zhou, L.: Novel supramolecular alkaline ionic liquids–catalyzed heterogeneous transesterification of Xanthium sibiricum Patr oil to biodiesel. Energy Sources Part A 39(13), 1377–1382 (2017)CrossRefGoogle Scholar
  18. 18.
    Shao, Y.B., Wan, H., Miao, J.M., Guan, G.F.: Synthesis of an immobilized Brønsted acidic ionic liquid catalyst on chloromethyl polystyrene grafted silica gel for esterification. React. Kinet. Mech. Catal. 109(1), 149–158 (2013)CrossRefGoogle Scholar
  19. 19.
    Orprecio, R., Evans, C.H.: Polymer-immobilized cyclodextrin trapping of model organic pollutants in flowing water streams. J. Appl. Polym. Sci. 90(8), 2103–2110 (2003)CrossRefGoogle Scholar
  20. 20.
    Marusak, L.A., Messier, R., White, W.B.: Optical absorption spectrum of hematite, α-Fe2O3 near IR to UV. J. Phys. Chem. Solids 41(9), 981–984 (1980)CrossRefGoogle Scholar
  21. 21.
    Sherman, D.M., Waite, T.D.: Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am. Miner. 70(11–12), 1262–1269 (1985)Google Scholar
  22. 22.
    Zeng, D., Liu, S., Gong, W., Chen, H., Wang, G.: A nano-sized solid acid synthesized from rice hull ash for biodiesel production. RSC Adv. 4(39), 20535–20539 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, W.M., Wu, X.L., Hu, J.S., Guo, Y.G., Wan, L.J.: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18(24), 3941–3946 (2008)CrossRefGoogle Scholar
  24. 24.
    Chang, F., Zhou, Q., Pan, H., Liu, X.F., Zhang, H., Yang, S.: Efficient production of biodiesel from Xanthium sibiricum Patr oil via supramolecular catalysis. Renew. Energy 111, 556–560 (2017)CrossRefGoogle Scholar
  25. 25.
    Wang, R., Li, H., Chang, F., Luo, J., Hanna, M.A., Tan, D., Yang, S.: A facile, low-cost route for the preparation of calcined porous calcite and dolomite and their application as heterogeneous catalysts in biodiesel production. Catal. Sci. Technol. 3(9), 2244–2251 (2013)CrossRefGoogle Scholar
  26. 26.
    Sani, Y.M., Daud, W.M.A.W., Aziz, A.A.: Activity of solid acid catalysts for biodiesel production, a critical review. Appl. Catal. A 470, 140–161 (2014)CrossRefGoogle Scholar
  27. 27.
    Shuit, S.H., Tan, S.H.: Biodiesel production via esterification of palm fatty acid distillate using sulphonated multi-walled carbon nanotubes as a solid acid catalyst: process study, catalyst reusability and kinetic study. Bioenergy Res. 8(2), 605–617 (2015)CrossRefGoogle Scholar
  28. 28.
    Borges, M.E., Díaz, L.: Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review, Renew. Sustain. Energy Rev. 16(5), 2839–2849 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Comprehensive Utilization of Plant ResourcesKaili CollegeKailiChina
  2. 2.Pharmaceutical and Bioengineering CollegeHunan Chemical Vocational Technology CollegeZhuzhouChina

Personalised recommendations