Fermentative Production of Ethanol Using Pinus patula as Raw Material: Economic and Energy Assessment

  • Carlos A. García-Velásquez
  • Estefanny Carmona-Garcia
  • Ashley Sthefanía Caballero
  • Juan C. Solarte-Toro
  • Jimmy A. Martínez-Ruano
  • Carlos A. CardonaEmail author
Original Paper


The production of cellulosic ethanol has been gaining attention in the industry sector because of the high availability of lignocellulosic biomass from agricultural and forestry activities. Pinus patula is one of the most typical softwood species in Colombia. The aim of this work is to evaluate the production of ethanol using Pinus patula as raw material using dilute acid pretreatment and enzymatic hydrolysis to produce sugars able to be used as substrate for the strain Saccharomyces cerevisiae. Three fermentation configurations were selected to evaluate the performance of the microorganism: configurations 1 and 2 used glucose in a percentage of 80%w/v and 70%w/v, respectively, as substrate to establish the adaptation requirements of the microorganism. The configuration 3 considered the use of concentrated P. patula hydrolysate. An experimental yield of 0.364 ± 0.009 g ethanol/g sugar (73% of the theoretical) was obtained. Additionally, the economic and energetic comparison between the biochemical (ethanol production through fermentation) and thermochemical (synthesis gas through gasification) pathways to produce bioenergy was performed through simulation approaches. As main results, a higher ethanol production cost (1.53 USD/L) was obtained in comparison to the market price (0.77 USD/L) and a low energy efficiency (20%). Different alternatives such as waste integration and energy incentives must be considered in order to produce ethanol in a feasible way.


Ethanolic fermentation Energy and economic assessment Biochemical versus thermochemical routes 



The authors express their acknowledgments to the Centro de Bioinformática y Biología Computacional (BIOS) for the financial support through the project entitled “Fortalecimiento de CTEI en biotecnologia para el departamento de Caldas apoyado por infraestructura computacional avanzada y trabajo colaborativo (CALDAS BIOREGION)” Grant No. 08112013-0621. The authors also express their gratitude to the Universidad Nacional de Colombia Sede Manizales through the Projects entitled “Development of modular small-scale integrated biorefineries to produce an optimal range of bioproducts from a variety of rural agricultural and agroindustrial residues/wastes with a minimum consumption of fossil energy—SMIBIO” from ERANET LAC 2015 Grant No. 202010011331 and the Project “Techno-economic and environmental evaluation of a biorefinery using the residues from the Coffee Crop” Grant No. 202010014230.

Supplementary material

12649_2018_494_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 KB)


  1. 1.
    Ford, C.M., Jones, N.B., Chirwa, P.W.: Pinus patula and pine hybrid hedge productivity in South Africa: a comparison between two vegetative propagation systems exposed to natural infection by Fusarium circinatum. J. For. Sci. 2620, 1–9 (2014). CrossRefGoogle Scholar
  2. 2.
    Moncada, J., Cardona, C.A., Higuita, J.C., Vélez, J.J., López-Suarez, F.E.: Wood residue (Pinus patula bark) as an alternative feedstock for producing ethanol and furfural in Colombia: experimental, techno-economic and environmental assessments. Chem. Eng. Sci. 140, 309–318 (2016). CrossRefGoogle Scholar
  3. 3.
    García, C.A., Betancourt, R., Cardona, C.A.: Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus patula. J. Environ. Manage. (2015). CrossRefGoogle Scholar
  4. 4.
    Damartzis, T., Zabaniotou, A.: Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review. Renew. Sustain. Energy Rev. 15, 366–378 (2011). CrossRefGoogle Scholar
  5. 5.
    Johnson, E.: Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod. Biorefin. 10, 164–174 (2016). CrossRefGoogle Scholar
  6. 6.
    Soudham, V.P., Raut, D.G., Anugwom, I., Brandberg, T., Larsson, C., Mikkola, J.P.: Coupled enzymatic hydrolysis and ethanol fermentation: ionic liquid pretreatment for enhanced yields. Biotechnol. Biofuels. 8, 135 (2015). CrossRefGoogle Scholar
  7. 7.
    Daza Serna, L.V., Orrego Alzate, C.E., Cardona Alzate, C.A.: Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 199, 113–120 (2016)CrossRefGoogle Scholar
  8. 8.
    Galbe, M., Zacchi, G.: A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59, 618–628 (2002). CrossRefGoogle Scholar
  9. 9.
    Hoyer, K., Galbe, M., Zacchi, G.: Production of fuel ethanol from softwood by simultaneous saccharification and fermentation at high dry matter content. J. Chem. Technol. Biotechnol. 84, 570–577 (2009). CrossRefGoogle Scholar
  10. 10.
    St1 Biofuels Oy: Cellunolix® ethanol plant to be built in Finland.
  11. 11.
    Söderström, J., Pilcher, L., Galbe, M., Zacchi, G.: Two-step pretreatment of softwood with SO2 two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Appl. Biochem. Biotechnol. 98–100, 5–21 (2002)Google Scholar
  12. 12.
    St1 Biofuels Oy: St1´s and SOK´s joint venture NEB plans 50-million-litre Cellunolix® bioethanol plant in Pietarsaari.
  13. 13.
    Aho, A., Kumar, N., Eränen, K., Holmbom, B., Hupa, M., Salmi, T., Murzin, D.Y.: Pyrolysis of softwood carbohydrates in a fluidized bed reactor. Int. J. Mol. Sci. 9(9), 1665–1675 (2008)CrossRefGoogle Scholar
  14. 14.
    Garcìa-Pérez, M., Chaala, A., Pakdel, H., Kretschmer, D., Roy, C.: Vacuum pyrolysis of softwood and hardwood biomass: comparison between product yields and bio-oil properties. J. Anal. Appl. Pyrolysis. 78, 104–116 (2007). CrossRefGoogle Scholar
  15. 15.
    Oasmaa, A., Solantausta, Y., Arpiainen, V., Kuoppala, E., Sipilä, K.: Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuels. 24, 1380–1388 (2010). CrossRefGoogle Scholar
  16. 16.
    Amaral, S., De Carvalho Junior, A., Costa, M.A.M., Neto, T.G.S., Dellani, R., Leite, L.H.S.: Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions. Bioresour. Technol. 164, 55–63 (2014). CrossRefGoogle Scholar
  17. 17.
    Roy, M.M., Corscadden, K.W.: An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Appl. Energy. 99, 206–212 (2012). CrossRefGoogle Scholar
  18. 18.
    García, C.A., Morales, M., Quintero, J., Aroca, G., Cardona, C.A.: Environmental assessment of hydrogen production based on Pinus patula plantations in Colombia. Energy. 139, 606–616 (2017). CrossRefGoogle Scholar
  19. 19.
    Waldner, M.H., Vogel, F.: Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind. Eng. Chem. Res. 44, 4543–4551 (2005). CrossRefGoogle Scholar
  20. 20.
    Mandl, C., Obernberger, I., Scharler, I.R.: Characterisation of fuel bound nitrogen in the gasification process and the staged combustion of producer gas from the updraft gasification of softwood pellets. Biomass Bioenergy 35, 4595–4604 (2011). CrossRefGoogle Scholar
  21. 21.
    Moncada, J., Tamayo, J., Cardona, C.A.: Evolution from biofuels to integrated biorefineries: techno-economic and environmental assessment of oil palm in Colombia. J. Clean. Prod. 81, 51–59 (2014)CrossRefGoogle Scholar
  22. 22.
    Chum, H., Faaij, A., Moreira, J.: Bioenergy. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y. (eds.) Renewable Energy Sources and Climate Change Mitigation. pp. 46–55. Intergovernmental Panel on Climate Change (IPCC), Geneva (2011)Google Scholar
  23. 23.
    García-Velásquez, C.A.: Hydrogen production through gasification and dark fermentation. (2016).
  24. 24.
    Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., Goud, V.V.: Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenergy 81, 9–18 (2015). CrossRefGoogle Scholar
  25. 25.
    Karimi, K., Taherzadeh, M.J.: A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour. Technol. 200, 1008–1018 (2016). CrossRefGoogle Scholar
  26. 26.
    Selig, M., Weiss, N., Ji, Y.: Enzymatic Saccharification of Lignocellulosic Biomass, pp. 1–5. National Renewable Energy Laboratory, Golden (2008)Google Scholar
  27. 27.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). CrossRefGoogle Scholar
  28. 28.
    Jensen, J., Morinelly, J., Aglan, A., Mix, A., Shonnard, D.: Kinetic characterization of biomass dilute sulfuric acid hydrolysis: mixtures of hardwoods, softwood, and switchgrass. Environ. Energy Eng. 54, 1637–1645 (2008). CrossRefGoogle Scholar
  29. 29.
    Esteghlalian, A., Hashimoto, A.G., Fenske, J.J., Penner, M.H.: Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour. Technol. 59, 129–136 (1997). CrossRefGoogle Scholar
  30. 30.
    Wooley, R.J., Putsche, V.: Development of an ASPEN PLUS physical property database for biofuels components, pp.1–38. National Renewable Energy Laboratory, Golden (1996)CrossRefGoogle Scholar
  31. 31.
    García, C.A., Peña, Á, Betancourt, R., Cardona, C.A.: Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: coffee cut-stems case. J. Environ. Manage. (2017). CrossRefGoogle Scholar
  32. 32.
    Quintero, J.a., Moncada, J., Cardona, C.a.: Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour. Technol. 139, 300–307 (2013). CrossRefGoogle Scholar
  33. 33.
    Moncada, J., Tamayo, J.A., Cardona, C.A.: Integrating first, second, and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem. Eng. Sci. 118, 126–140 (2014). CrossRefGoogle Scholar
  34. 34.
    Rafiqul, I.S.M., Mimi Sakinah, aM.: Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chem. Eng. Sci. 71, 431–437 (2012). CrossRefGoogle Scholar
  35. 35.
    Khodaverdi, M., Karimi, K., Jeihanipour, A., Taherzadeh, M.J.: Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO. J. Ind. Microbiol. Biotechnol. 39, 429–438 (2012). CrossRefGoogle Scholar
  36. 36.
    Kadam, K.L., Rydholm, E.C., McMillan, J.D.: Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol. Prog. 20, 698–705 (2004). CrossRefGoogle Scholar
  37. 37.
    Quintero, J.A., Cardona, C.A.: Process Simulation of Fuel Ethanol Production from Lignocellulosics using Aspen Plus. Ind. Eng. Chem. Res. 50(10), 6205–6212 (2011)CrossRefGoogle Scholar
  38. 38.
    Pitt, W.W., Haag, G.L., Lee, D.D.: Recovery of ethanol from fermentation broths using selective sorption-desorption. Biotechnol. Bioeng. 25, 123–131 (1983). CrossRefGoogle Scholar
  39. 39.
    García, C.A., Moncada, J., Aristizábal Marulanda, V., Cardona, C.A.: Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: coffee cut-stems. Int. J. Hydrogen Energy. 42, 5849–5864 (2017). CrossRefGoogle Scholar
  40. 40.
    Melgar, A., Pérez, J.F., Laget, H., Horillo, A.: Thermochemical equilibrium modelling of a gasifying process. Energy Convers. Manag. 48, 59–67 (2007). CrossRefGoogle Scholar
  41. 41.
    Jarungthammachote, S., Dutta, A.: Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Convers. Manag. 49, 1345–1356 (2008). CrossRefGoogle Scholar
  42. 42.
    Peters, M.S., Timmerhaus, K.D., West, R.E.: Plant Design and Economics for Chemical Engineers. McGraw-Hill, New York (2004)Google Scholar
  43. 43.
    Fuels, F.: Wood chip and wood pellet price comparison.
  44. 44.
    Kemcore: Reagents Market Price.
  45. 45.
    Liu, G., Zhang, J., Bao, J.: Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess. Biosyst. Eng. 39, 133–140 (2016). CrossRefGoogle Scholar
  46. 46.
    Federación Nacional de Biocombustibles de Colombia—Fedebiocombustibles: Biofuel prices in Colombia 2016–2017Google Scholar
  47. 47.
    Ulrich, G.D., Vasudevan, P.T.: How to estimate utility costs. Chem. Eng. 113, 66–69 (2006)Google Scholar
  48. 48.
    Boundy, B.: Biomass Energy Data Book, 4 ed, p. 254. Deparment of Energy, Washington DC, (2011)CrossRefGoogle Scholar
  49. 49.
    Kim, K.H.: Two-stage dilute acid-catalyzed hydrolytic conversion of softwood sawdust into sugars fermentable by ethanologenic microorganisms. J. Sci. Food Agric. 85, 2461–2467 (2005). CrossRefGoogle Scholar
  50. 50.
    Bösch, P., Wallberg, O., Joelsson, E., Galbe, M., Zacchi, G.: Research impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production. Biotechnol. Biofuels. 3, 15 (2010). CrossRefGoogle Scholar
  51. 51.
    Shinozaki, Y., Kitamoto, H.K.: Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. J. Biosci. Bioeng. 111, 320–325 (2011). CrossRefGoogle Scholar
  52. 52.
    Dinh, T.N., Nagahisa, K., Hirasawa, T., Furusawa, C., Shimizu, H.: Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE. 3, e2623 (2008). CrossRefGoogle Scholar
  53. 53.
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010). CrossRefGoogle Scholar
  54. 54.
    Qian, M., Tian, S., Li, X., Zhang, J., Pan, Y., Yang, X.: Ethanol production from dilute-acid softwood hydrolysate by co-culture. Appl. Biochem. Biotechnol. (2006). CrossRefGoogle Scholar
  55. 55.
    Nyangi Chacha: Comparison of Escherichia coli KO11 and Saccharomyces cerevisiae ATCC 96581 in fermenting Pinus patula hydrolysate pretreated at different steam explosion severity. Afr. J. Biotechnol. (2012). CrossRefGoogle Scholar
  56. 56.
    Hawkins, G.M., Doran-Peterson, J.: A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol. Biofuels. 4, 49 (2011). CrossRefGoogle Scholar
  57. 57.
    Nguyen, Q.A., Tucker, M.P., Keller, F.A., Beaty, D.A., Connors, K.M., Eddy, F.P.: Dilute acid hydrolysis of softwoods. Appl. Biochem. Biotechnol. (1999). CrossRefGoogle Scholar
  58. 58.
    Mesa, L., Martínez, Y., Barrio, E., González, E.: Desirability function for optimization of dilute acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations. Appl. Energy. 198, 299–311 (2017). CrossRefGoogle Scholar
  59. 59.
    Parajó, J.C., Vázquez, D., Alonso, J.L., Santos, V., Dominguez, H.: Prehydrolysis of Eucalyptus wood with dilute sulphuric acid: operation at atmospheric pressure. Holz als Roh- und Werkst. 51, 357–363 (1993). CrossRefGoogle Scholar
  60. 60.
    Daystar, J., Treasure, T., Gonzalez, R., Reeb, C., Venditti, R., Kelley, S.: The NREL biochemical and thermochemical ethanol conversion processes: financial and environmental analysis comparison. BioResources. 10, 5096–5116 (2015). CrossRefGoogle Scholar
  61. 61.
    Zhao, L., Zhang, X., Xu, J., Ou, X., Chang, S., Wu, M.: Techno-economic analysis of bioethanol production from lignocellulosic biomass in china: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Energies. 8, 4096–4117 (2015). CrossRefGoogle Scholar
  62. 62.
    Foust, T.D., Aden, A., Dutta, A., Phillips, S.: An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose. 16, 547–565 (2009). CrossRefGoogle Scholar
  63. 63.
    Piccolo, C., Bezzo, F.: A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenergy 33, 478–491 (2009). CrossRefGoogle Scholar
  64. 64.
    Wingren, A., Söderström, J., Galbe, M., Zacchi, G.: Process considerations and economic evaluation of two-step steam pretreatment for production of fuel ethanol from softwood. Biotechnol. Prog. 20, 1421–1429 (2004). CrossRefGoogle Scholar
  65. 65.
    Unidad de Planeación Energética (UPME): Informe Mensual De Variables De Generación Y Del Mercado Eléctrico Colombiano., Bogotá, Colombia (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Carlos A. García-Velásquez
    • 1
  • Estefanny Carmona-Garcia
    • 1
  • Ashley Sthefanía Caballero
    • 1
  • Juan C. Solarte-Toro
    • 1
    return OK on get
  • Jimmy A. Martínez-Ruano
    • 1
    • 2
  • Carlos A. Cardona
    • 1
    Email author
  1. 1.Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería QuímicaUniversidad Nacional de Colombia Sede ManizalesManizalesColombia
  2. 2.School of Biochemical EngineeringPontificia Universidad Catolica de ValparaísoValparaísoChile

Personalised recommendations