Advertisement

Enhancement of Amylase and Lipase Production from Bacillus licheniformis 016 Using Waste Chicken Feathers as Peptone Source

  • Mustafa Ozkan Baltaci
  • Tugba Orak
  • Mesut Taskin
  • Ahmet Adiguzel
  • Hakan Ozkan
Original Paper
  • 42 Downloads

Abstract

Peptones are accepted as one of the most expensive medium components of microorganisms. The present study was undertaken to investigate the effect of chicken feather peptone (CFP) on enzyme (lipase and amylase) production by Bacillus licheniformis 016. In order to assess its effectiveness on enzyme production, CFP was compared with commercial fish peptone (FP) and protease peptone (PP). The optimum concentration of CFP for lipase and amylase production was determined as 5 and 6 g/L, respectively. The optimum concentration of both FP and PP was found as 4 g/L for lipase production and 5 g/L for amylase production. In all the peptone media, the optimal incubation times for amylase and lipase production were determined as 24 and 48 h, respectively. CFP was found to be more favorable for lipase and amylase production. In CFP, PP and FP media, the maximum lipase activities were 1870, 1582 and 1831 U/L, and the maximum amylase activities were 1680, 1505 and 632 U/L, respectively. On the other hand, better cell growth performance was achieved in CFP media compared to PP and FP media. The least pH change was detected in CFP-containing media. CFP was also found to prevent starch aggregation in the medium in contrast to FP and PP. This study exhibited that CFP was a better nitrogen source or an inducer for lipase and amylase production as well as cell growth in comparison to the tested commercial peptones.

Keywords

Waste chicken feathers Peptone Lipase Amylase Production 

Notes

Author Contributions

The authors alone are responsible for the content and writing of the paper.

Funding

This work was supported by a grant from the research funds appropriated to Ataturk University, Erzurum, Turkey (FAD-2018-6352).

Compliance with Ethical Standards

Conflict of interest

The authors report no conflicts of interest.

Research Involving Human and Animal Participants

The manuscript does not contain experiments involving human participants and/or animals.

References

  1. 1.
    Gurung, N., Ray, S., Bose, S., Rai, V.: A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res. Int. (2013).  https://doi.org/10.1155/2013/329121 CrossRefGoogle Scholar
  2. 2.
    Sundarram, A., Murthy, T.P.K.: α-Amylase production and applications: a review. J. Appl. Environ. Microbiol. 2, 166–175 (2014)Google Scholar
  3. 3.
    Treichel, H., de Oliveira, D., Mazutti, M.A., Di Luccio, M., Oliveira, J.V.: A review on microbial lipases production. Food Bioprocess Technol. 3, 182–196 (2010)CrossRefGoogle Scholar
  4. 4.
    Neagu, S., Cojoc, R., Tudorache, M., Gomoiu, I., Enache, M.: The lipase activity from moderately halophilic and halotolerant microorganisms involved in bioconversion of waste glycerol from biodiesel industry. Waste Biomass Valoriz. 9, 187–193 (2018)CrossRefGoogle Scholar
  5. 5.
    Taskin, M., Ucar, M.H., Unver, Y., Kara, A.A., Ozdemir, M., Ortucu, S.: Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatal. Agric. Biotechnol. 8, 97–103 (2016)Google Scholar
  6. 6.
    Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K.M., Soccol, C.R., Pandey, A.: a-Amylases from microbial sources—an overview on recent developments. Food Technol. Biotechnol. 44, 173–184 (2006)Google Scholar
  7. 7.
    Souza, P.Md.: Application of microbial α-amylase in industry—a review. Braz. J. Microbiol. 41, 850–861 (2010)CrossRefGoogle Scholar
  8. 8.
    Saranraj, P., Stella, D.: Fungal amylase—a review. Int. J. Microbiol. Res. 4, 203–211 (2013)Google Scholar
  9. 9.
    Ait Kaki El-Hadef El-Okki, A., Gagaoua, M., Bennamoun, L., Djekrif, S., Hafid, K., El-Hadef El-Okki, M., Meraihi, Z.: Statistical optimization of thermostable α-amylase production by a newly isolated Rhizopus oryzae strain FSIS4 using decommissioned dates. Waste Biomass Valoriz. 8, 2017–2027 (2017)CrossRefGoogle Scholar
  10. 10.
    Hiteshi, K., Gupta, R.: Thermal adaptation of α-amylases: a review. Extremophiles 18, 937–944 (2014)CrossRefGoogle Scholar
  11. 11.
    Ribeiro, D.S., Henrique, S., Oliveira, L.S., Macedo, G.A., Fleuri, L.F.: Enzymes in juice processing: a review. Food Sci. Technol. Int. 45, 635–641 (2010)CrossRefGoogle Scholar
  12. 12.
    Kaushik, R., Saran, S., Isar, J., Saxena, R.: Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J. Mol. Catal. B 40, 121–126 (2006)CrossRefGoogle Scholar
  13. 13.
    Silva, M.F., Freire, D.M.G., de Castro, A.M., Di Luccio, M., Mazutti, M.A., Oliveira, J.V.: Production of multifunctional lipases by Penicillium verrucosum and Penicillium brevicompactum under solid state fermentation of babassu cake and castor meal. Bioprocess Biosyst. Eng. 34, 145–152 (2011)CrossRefGoogle Scholar
  14. 14.
    Murthy, P.S., Madhava, N.M., Srinivas, P.: Production of α-amylase under solid-state fermentation utilizing coffee waste. J. Chem. Technol. Biotechnol. 84, 1246–1249 (2009)CrossRefGoogle Scholar
  15. 15.
    Erdal, S., Taskin, M.: Production of alpha-amylase by Penicillium expansum MT-1 in solid-state fermentation using waste Loquat (Eriobotrya japonica Lindley) kernels as substrate. Romanian Biotechnol. Lett. 15, 5342–5350 (2010)Google Scholar
  16. 16.
    Saxena, R., Singh, R.: Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp. Braz. J. Microbiol. 42, 1334–1342 (2011)CrossRefGoogle Scholar
  17. 17.
    Fickers, P., Nicaud, J.M., Gaillardin, C., Destain, J., Thonart, P.: Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J. Appl. Microbiol. 96, 742–749 (2004)CrossRefGoogle Scholar
  18. 18.
    Mazhar, H., Abbas, N., Ali, S., Sohail, A., Hussain, Z., Ali, S.S.: Optimized production of lipase from Bacillus subtilis PCSIRNL-39. Afr. J. Biotechnol. 16, 1106–1115 (2017)CrossRefGoogle Scholar
  19. 19.
    Riyadi, F.A., Alam, M.Z., Salleh, M.N., Salleh, H.M.: Optimization of thermostable organic solvent-tolerant lipase production by thermotolerant Rhizopus sp. using solid-state fermentation of palm kernel cake. 3 Biotech 7, 300 (2017)CrossRefGoogle Scholar
  20. 20.
    Oshoma, C., Imarhiagbe, E., Ikenebomeh, M., Eigbaredon, H.: Nitrogen supplements effect on amylase production by Aspergillus niger using cassava whey medium. Afr. J. Biotechnol. (2010).  https://doi.org/10.5897/AJB09.438 CrossRefGoogle Scholar
  21. 21.
    Juwon, A.D., Emmanuel, O.F.: Experimental investigations on the effects of carbon and nitrogen sources on concomitant amylase and polygalacturonase production by Trichoderma viride BITRS-1001 in submerged fermentation. Biotechnol. Res. Int. (2012).  https://doi.org/10.1155/2012/904763 CrossRefGoogle Scholar
  22. 22.
    Taskin, M., Kurbanoglu, E.B.: Evaluation of waste chicken feathers as peptone source for bacterial growth. J. Appl. Microbiol. 111, 826–834 (2011)CrossRefGoogle Scholar
  23. 23.
    Taskin, M.: A new strategy for improved glutathione production from Saccharomyces cerevisiae: use of cysteine- and glycine-rich chicken feather protein hydrolysate as a new cheap substrate. J. Sci. Food Agric. 93, 535–541 (2013)CrossRefGoogle Scholar
  24. 24.
    Taskin, M., Unver, Y., Firat, A., Ortucu, S., Yildiz, M.: Sheep wool protein hydrolysate: a new peptone source for microorganisms. J. Chem. Technol. Biotechnol. 91, 1675–1680 (2016)CrossRefGoogle Scholar
  25. 25.
    Chojnacka, K., Górecka, H., Michalak, I., Górecki, H.: A review: valorization of keratinous materials. Waste Biomass Valoriz. 2, 317–321 (2011)CrossRefGoogle Scholar
  26. 26.
    Maciel, J.L., Werlang, P.O., Daroit, D.J., Brandelli, A.: Characterization of protein-rich hydrolysates produced through microbial conversion of waste feathers. Waste Biomass Valoriz. 8, 1177–1186 (2017)CrossRefGoogle Scholar
  27. 27.
    Kshetri, P., Roy, S.S., Sharma, S.K., Singh, T.S., Ansari, M.A., Prakash, N., Ngachan, S.V.: Transforming chicken feather waste into feather protein hydrolysate using a newly isolated multifaceted keratinolytic bacterium Chryseobacterium sediminis RCM-SSR-7. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-0037-4 CrossRefGoogle Scholar
  28. 28.
    Taskin, M., Sisman, T., Erdal, S., Kurbanoglu, E.B.: Use of waste chicken feathers as peptone for production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. Eur. Food Res. Technol. 233, 657–665 (2011)CrossRefGoogle Scholar
  29. 29.
    Taskin, M., Ozkan, B., Atici, O., Aydogan, M.N.: Utilization of chicken feather hydrolysate as a novel fermentation substrate for production of exopolysaccharide and mycelial biomass from edible mushroom Morchella esculenta. Int. J. Food Sci. Nutr. 20, 597–602 (2012)CrossRefGoogle Scholar
  30. 30.
    Taskin, M., Esim, N., Ortucu, S.: Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food Bioprod. Process. 9, 773–779 (2012)CrossRefGoogle Scholar
  31. 31.
    Orak, T., Caglar, O., Ortucu, S., Ozkan, H., Taskin, M.: Chicken feather peptone: a new alternative nitrogen source for pigment production by Monascus purpureus. J. Biotechnol. 271, 56–62 (2018)CrossRefGoogle Scholar
  32. 32.
    Hung, T.C., Giridhar, R., Chiou, S.H., Wu, W.T.: Binary immobilization of Candida rugosa lipase on chitosan. J. Mol. Catal. B 26, 69–78 (2003)CrossRefGoogle Scholar
  33. 33.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  34. 34.
    Abusham, R.A., Rahman, R.N.Z.R., Salleh, A.B., Basri, M.: Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microb. Cell Fact. 8, 20 (2009)CrossRefGoogle Scholar
  35. 35.
    Navvabi, A., Razzaghi, M., Fernandes, P., Karami, L., Homaei, A.: Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem. 70, 61–70 (2018)CrossRefGoogle Scholar
  36. 36.
    Turki, S., Kraeim, I.B., Weeckers, F., Thonart, P., Kallel, H.: Isolation of bioactive peptides from tryptone that modulate lipase production in Yarrowia lipolytica. Bioresour. Technol. 100, 2724–2731 (2009)CrossRefGoogle Scholar
  37. 37.
    Freire, D.M., Teles, E.M., Bon, E.P., Sant’Anna, G.L.: Lipase production by Penicillium restrictum in a bench-scale fermenter. Biotechnol. Fuels Chem. (1997).  https://doi.org/10.1007/978-1-4612-2312-2_36 CrossRefGoogle Scholar
  38. 38.
    Pedersen, H., Nielsen, J.: The influence of nitrogen sources on the α-amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol. Biotechnol. 53, 278–281 (2000)CrossRefGoogle Scholar
  39. 39.
    Lima, V.M., Krieger, N., Sarquis, M.I.M., Mitchell, D.A., Ramos, L.P., Fontana, J.D.: Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum. Food Technol. Biotechnol. 41, 105–110 (2003)Google Scholar
  40. 40.
    Taskin, M., Ortucu, S., Unver, Y., Arslan, N.P., Algur, O.F., Saghafian, A.: L-lactic acid production by Rhizopus oryzae MBG-10 using starch-rich waste loquat kernels as substrate. Starch/Starke 65, 322–329 (2013)CrossRefGoogle Scholar
  41. 41.
    Chen, J., Gai, Y., Fu, G., Zhou, W., Zhang, D., Wen, J.: Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein. Biotechnol. Lett. 37, 899–906 (2015)CrossRefGoogle Scholar
  42. 42.
    Srivastava, R.A.K., Baruah, J.N.: Culture conditions for production of thermostable amylase by Bacillus stearothermophilus. Appl. Environ. Microbiol. 52, 179–184 (1986)Google Scholar
  43. 43.
    Shanmughapriya, S., Kiran, G.S., Selvin, J., Gandhimathi, R., Baskar, T.B., Manilal, A.: Optimization, production, and partial characterization of an alkalophilic amylase produced by sponge associated marine bacterium Halobacterium salinarum MMD047. Biotechnol. Bioprocess Eng. 14, 67–75 (2009)CrossRefGoogle Scholar
  44. 44.
    Unakal, C., Kallur, R.I., Kaliwal, B.B.: Production of α-amylase using banana waste by Bacillus subtilis under solid state fermentation. Eur. J. Exp. Biol. 2, 1044–1052 (2012)Google Scholar
  45. 45.
    Kanmani, P., Karthik, S., Aravind, J., Kumaresan, K.: The use of response surface methodology as a statistical tool for media optimization in lipase production from the dairy effluent isolate Fusarium solani. ISRN Biotechnol. (2012).  https://doi.org/10.5402/2013/528708 CrossRefGoogle Scholar
  46. 46.
    Facchini, F.D.A., Vici, A.C., Pereira, M.G., Jorge, J.A., de Moraes, Md.L.T.: Enhanced lipase production of Fusarium verticillioides by using response surface methodology and wastewater pretreatment application. J. Chem. Technol. Biotechnol. 6, 996–1002 (2016)Google Scholar
  47. 47.
    Kuppamuthu, K., Soundiraraj, S., Palanisamy, K.: Utilization of whey as a cheap substrate for the optimization of lipase production by Bacillus subtilis B10 isolated from dairy industry. J. Microbiol. Biotechnol. Food Sci. 7, 193 (2017)CrossRefGoogle Scholar
  48. 48.
    Akcan, N.: High level production of extracellular α-amylase from Bacillus licheniformis ATCC 12759 in submerged fermentation. Rom. Biotechnol. Lett. 16, 6833–6840 (2011)Google Scholar
  49. 49.
    Kalogiannis, S., Iakovidou, G., Liakopoulou-Kyriakides, M., Kyriakidis, D.A., Skaracis, G.N.: Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem. 39, 249–256 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey

Personalised recommendations