Advertisement

Optimization of Fe and Mn Removal from Coal Acid Mine Drainage (AMD) with Waste Biomaterials: Statistical Modeling and Kinetic Study

  • Dámaris Núñez-Gómez
  • Flávio Rubens Lapolli
  • Maria Elisa Nagel-Hassemer
  • María Ángeles Lobo-RecioEmail author
Original Paper
  • 110 Downloads

Abstract

The main characteristics of coal acid mine drainage (AMD) are a low pH and high concentrations of sulfate and different metallic ions. Response surface methodology using the central composite rotatable design (CCRD) model was used to optimize the parameters for AMD remediation with aquaculture farming waste [shrimp shell (SS) and mussel byssus (MB)]. SS was chosen due to its high chitin (a metal sorbent) and calcium carbonate (an acidity neutralizing agent) content, and MB because of its potential synergistic effect for the treatment. The coefficient of determination and standard error results from the analysis of variance have shown the model to be adequate. The predicted values were in good agreement with the experimental values. The best experimental conditions established from the statistical study were 136 rpm, 11.46 g L−1 SS and 71.6 g L−1 MB. CCRD can efficiently be applied for modeling the AMD remediation with biomaterials and is an economical way of obtaining the maximum amount of information in a short period of time with the fewest number of experiments. Additionally, five kinetic models, i.e., pseudo-first-order, pseudo-second-order, intraparticle diffusion, Bangham and Elovich equation, were tested to investigate the adsorption mechanisms. The kinetic studies revealed that a 200 min contact time is sufficient to transform AMD into water suitable for non-potable reuse. The pseudo-second-order model provided the best fitting of the experimental data, indicating a chemical adsorption mechanism. This research shows the suitability of the proposed treatment, and the information is valuable for designing a low-cost remediation process for AMD.

Graphical Abstract

Keywords

Acid mine drainage (AMD) Biomaterials Chitin Factorial approach Sorption Kinetics models 

Notes

Acknowledgements

The authors are grateful to the Department of Environmental Engineering at the Federal University of Santa Catarina (UFSC) and the Brazil and National Council of Scientific and Technologic Development (CNPq, CT-Mineral 51/2013) for financial and technical support. This paper is an extension of the work presented at the 4th International Conference on Energy and Environment Research – ICEER 2017 (Porto/Portugal) and published in Energy Procedia.

Supplementary material

12649_2018_405_MOESM1_ESM.docx (173 kb)
Supplementary material 1 (DOCX 173 KB)

References

  1. 1.
    Johann, T., Martin, G., Sysman, M., Ina, G., Johann, S.: The 2012 acid mine drainage (AMD) crisis in Carolina’s municipal water supply. Afr. Hist. Rev. 46(2) 77–107 (2014).  https://doi.org/10.1080/17532523.2014.943978 CrossRefGoogle Scholar
  2. 2.
    Valente, T., Grande, J., De La Torre, M., Gomes, P., Santisteban, M., Borrego, J., Braga, M.: Mineralogy and geochemistry of a clogged mining reservoir affected by historical acid mine drainage in an abandoned mining area. J. Geochem. Explor. 157, 66–76 (2015).  https://doi.org/10.1016/j.gexplo.2015.05.016 CrossRefGoogle Scholar
  3. 3.
    Sarmiento, A., Nieto, J., Cánovas, C., Olías, M.: La contaminación minera de los ríos Tinto y Odiel, Geología de la provincia de Huelva, pp. 173–183, (2016)Google Scholar
  4. 4.
    Trujillo, M.: Recuperación de suelos de relaves mineros para convertirlos en áreas verdes en la planta piloto metalúrgica de yauris-uncp. Convicciones 2(1), 36–43 http://revistas.uncp.edu.pe/index.php/convicciones/article/viewFile/192/188 (2016). Accessed 14 Oct 2017
  5. 5.
    Amaral Filho, J., Schneider, I., De Brum, I., Sampaio, C., Miltzarek, G., Schneider, C.: Characterization of a coal tailing deposit for integrated mine waste management in the Brazilian coalfield of Santa Catarina. Revista Escola de Minas 66(3), 347–353 (2013).  https://doi.org/10.1590/S0370-44672013000300012 CrossRefGoogle Scholar
  6. 6.
    Soares, P., Castilhos, Z.: Recuperação de áreas degradadas pela mineração no Brasil, de IV Jornada do Programa de Capacitação Interna—CETEM, http://mineralis.cetem.gov.br/bitstream/cetem/1802/1/5%20-%20Pablo_Soares_JPCI_2015%20impresso.pdf (2015). Accessed 10 Sept 2017
  7. 7.
    Fávere, V., Laus, R., Laranjeira, M., Martins, A., Pedrosa, R.: Use of chitosan microspheres as remedial material for acidity and iron (III) contents of coal mining wastewaters. Environ. Technol. 25, 861–866 (2004).  https://doi.org/10.1080/09593330.2004.9619378 CrossRefGoogle Scholar
  8. 8.
    Manahan, S.E.: Environmental Chemistry, 10th edn., p. 752. CRC Press, Florida (2017)Google Scholar
  9. 9.
    Wilson, B., Pyatt, F.: Heavy metal dispersion, persistance, and bioccumulation around an ancient copper mine situated in Anglesey, UK. Ecotoxicol. Environ. Saf. 66(2), 278–315, (2007).  https://doi.org/10.1016/j.ecoenv.2006.02.015 CrossRefGoogle Scholar
  10. 10.
    Gazsó, L.G.: The key microbial processes in the removal of toxic metals and radionuclides from the environment. CEJOEM 7(3–4), 178–185. http://www.omfi.hu/cejoem/Volume7/Vol7No3-4/CE01_3-4-03.html (2001). Accessed 9 Oct 2017
  11. 11.
    Kaksonen, A., Puhakka, J.: Sulfate reduction based bioprocesses for the treatment. Eng Life, 7, 541–564, (2007).  https://doi.org/10.1002/elsc.200720216 CrossRefGoogle Scholar
  12. 12.
    Robinson-Lora, M., Brennan, R.: Efficient metal removal and neutralization of acid mine drainage by crab-shell chitin under batch and continuous-flow conditions. Bioresour. Technol. 100, 5063–5071, (2009).  https://doi.org/10.1016/j.biortech.2008.11.063 Google Scholar
  13. 13.
    Berghorn, G., Hunzekar, G.: Passive Treatment Alternatives for Remediation Abandoned Mine-Drainage. Wiley, New York (2001).  https://doi.org/10.1002/rem.1007 Google Scholar
  14. 14.
    Zipper, C., Skousen, J.: Acid Mine Drainage, Rock Drainage, and Acid Sulfate Soils: Causes, Assessment, Prediction, Prevention, and Remediation, pp. 339–353. Wiley, New York (2014)Google Scholar
  15. 15.
    Farooq, U., Kozinski, J., Khan, M., Athar, M.: Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresour. Technol. 101, 5043–5053 (2010).  https://doi.org/10.1016/j.biortech.2010.02.030 CrossRefGoogle Scholar
  16. 16.
    Liu, D., Zhu, Y., Li, Z., Tian, D., Chen, L., Chen, P.: Chitin nanofibrils for rapid and efficient removal of metal ions from water system. Carbohydr. Polym. 98(1), 483–489 (2013).  https://doi.org/10.1016/j.carbpol.2013.06.015 CrossRefGoogle Scholar
  17. 17.
    Anastopoulos, I., Bhatnagar, A., Bikiaris, D., Kyzas, G.: Chitin adsorbents for toxic metals: a review. Int. J. Mol. Sci. 18(1), 114 (2017).  https://doi.org/10.3390/ijms18010114 CrossRefGoogle Scholar
  18. 18.
    Mohameda, S., El-Gendya, A., Abdel-kader, A., El-Ashkar, E.: Removal of heavy metals from water by adsorption on chitin derivatives. Der Pharm. Chem. 7(10), 275–283. http://www.derpharmachemica.com/pharma-chemica/removal-of-heavy-metals-from-water-by-adsorption-on-chitin-derivatives.pdf (2015). Accessed 30 Aug 2017
  19. 19.
    Rhazi, M., Desbrières, J., Tolaimate, A., Rinaudo, M., Vottero, P., Alagui, A., Meray, M.: Influence of the nature of the metal ions on the complexation with chitosan.: application to the treatment of liquid waste. Eur. Polym. J. 38(8), 1523–1530 (2002).  https://doi.org/10.1016/S0014-3057(02)00026-5 CrossRefGoogle Scholar
  20. 20.
    Bassi, R., Prasher, S., Simpson, B.: Effects of organic acids on the adsorption of heavy metal ions by chitosan flakes. J. Environ. Sci. Health. 34(2), 289–294 (1999).  https://doi.org/10.1080/10934529909376836 CrossRefGoogle Scholar
  21. 21.
    Pradhan, S., Shukla, S., Dorris, K.: Removal of nickel from aqueous solutions using crab shells. J. Hazard. Mater. 125(1–3), 201–204 (2005).  https://doi.org/10.1016/j.jhazmat.2005.05.029 Google Scholar
  22. 22.
    Xu, Y., Gallert, C., Winter, J.: Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl. Microbiol. Biotechnol. 79(4), 687–697 (2008).  https://doi.org/10.1007/s00253-008-1471-9 CrossRefGoogle Scholar
  23. 23.
    Das, S., Roy, D., Sen, R.: Utilization of chitinaceous wastes for the production of chitinase. Adv. Food Nutr. Res. 78, 27–46 (2016).  https://doi.org/10.1016/bs.afnr.2016.04.001 Google Scholar
  24. 24.
    Bajaj, M., Freiberg, A., Xu, W.J., Gallert, Y.: C.: Pilot-scale chitin extraction from shrimp shell waste by deproteination and decalcification with bacterial enrichment cultures. Appl. Microbiol. Biotechnol. 99(22), 9835–9846 (2015).  https://doi.org/10.1007/s00253-015-6841-5 no.CrossRefGoogle Scholar
  25. 25.
    Rinaudo, M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31(7), 603–632, (2006).  https://doi.org/10.1016/j.progpolymsci.2006.06.001 CrossRefGoogle Scholar
  26. 26.
    Qu, T., Verma, D., Alucozai, M., Tomar, V.: Influence of interfacial interactions on deformation mechanism and interface viscosity in α-chitin–calcite interfaces. Acta Biomater. 25, 325–338 (2015).  https://doi.org/10.1016/j.actbio.2015.06.034 CrossRefGoogle Scholar
  27. 27.
    Núñez-Gómez, D., Nagel-Hassemer, M.E., Lapolli, F., Lobo-Recio, M.A.: Potential of shrimp-shell residue in natura for the remediation of mine impacted water (MIW). Polímeros, 26, 1–7 (2016).  https://doi.org/10.1016/j.egypro.2017.10.248 CrossRefGoogle Scholar
  28. 28.
    Núñez-Gómez, D., Aparecida, A., Nagel-Hassemer, M.E., Lapolli, F., Lobo-Recio, M.A.: Aplication of the statistical experimental design to optimize mine-impacted water (MIW) remediation using shrimp-shell. Chemosphere, 167, 322–329 (2017).  https://doi.org/10.1016/j.chemosphere.2016.09.094 CrossRefGoogle Scholar
  29. 29.
    USEPA—United States Environmental ProtectionAgency: Method 3005A: Acid Digestion of Waters for Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy. USEPA—United States Environmental ProtectionAgency Washington DC (1992)Google Scholar
  30. 30.
    USEPA—United States Environmental ProtectionAgency: Method 3010A: Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy. USEPA—United States Environmental ProtectionAgency Washington DC (1992)Google Scholar
  31. 31.
    APHA—American Public Health Association: «3110 Metals by Atomic Absorption Spectrometry,» de Standard Methods for the Examination of Water and Wastewater, 22nd edn. APHA—American Public Health Association, Washington DC (2016)Google Scholar
  32. 32.
    Box, G., Hunter, W., Hunter, S.: An Introduction to Design, Data Analysis, and Model Building, Statistics for Experimenters, pp. 374–434. Wiley, New York (1978)zbMATHGoogle Scholar
  33. 33.
    Lagergren, S.: About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24, 1–39 (1898)Google Scholar
  34. 34.
    Porter, J., McKay, G.: The prediction of sorption from a binary mixture of acidic dyes using single- and mixed isotherm variants of the ideal adsorbed solute theory. Chem. Eng. Sci. 54, 5863–5885 (1999).  https://doi.org/10.1016/S0009-2509(99)00178-5 CrossRefGoogle Scholar
  35. 35.
    Morris, J.,. Weber, J.: Kinetics of adsorption on carbon from solution. ASCE 89(SA2), 31–59 (1963)Google Scholar
  36. 36.
    Low, K., Lee, C., Liew, S.: Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem. 36(1–2), 59–64 (2000).  https://doi.org/10.1016/S0032-9592(00)00177-1 Google Scholar
  37. 37.
    Tütem, E., Apak, R., Unal, C.: Adsorptive removal of chlorophenols from water by bituminous shale. Water Res. 32, 2315–2324, (1998).  https://doi.org/10.1016/S0043-1354(97)00476-4 CrossRefGoogle Scholar
  38. 38.
    Daubert, L., Brennan, R.: Passive remediation of acid mine drainage using crab shell chitin. Environ. Eng. Sci. 24(10), 1475–1480 (2007).  https://doi.org/10.1089/ees.2006.0199 CrossRefGoogle Scholar
  39. 39.
    Subhabrata, D., Shantonu, R., Jayanta, B.: Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage. J. Environ. Manage. 200, 135–144, (2017).  https://doi.org/10.1016/j.jenvman.2017.04.102 Google Scholar
  40. 40.
    Skousen, J., Zipper, C., Ziemkiewicz, P., Nairn, R., McDonald, L., Kleinmann, R.L.: Review of passive systems for acid mine drainage treatment. Mine Water Environ. 36(1), 133–153, (2017).  https://doi.org/10.1007/s10230-016-0417-1 CrossRefGoogle Scholar
  41. 41.
    Brazil, National Environment Council—Resolução CONAMA 430/2011. Provisions the conditions and standards of effluents and complements and changes Resolution 357 from March 17, 2005 issued by the National Environment Council (CONAMA), (2011)Google Scholar
  42. 42.
    Brasil, J., Ev, R., Milcharek, C., Martins, L., Pavan, F.: Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia waste. J. Hazard. Mater. B133, 143–153 (2006).  https://doi.org/10.1016/j.jhazmat.2005.10.002 Google Scholar
  43. 43.
    Saramago, S., Silva, N.: Uma introdução ao estudo de superfícies de resposta, de Revista Horizonte Científico, 4a edn., Universidade Federal de Uberlândia, Uberlândia (2005)Google Scholar
  44. 44.
    Gerente, C., Lee, V., Le Cloirec, P., McKay, G.: Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review. Rev. Environ. Sci. Bio/Technol. 37, 41–127 (2007).  https://doi.org/10.1080/10643380600729089 Google Scholar
  45. 45.
    Degremont, W.: Treatment Handbook, pp. 1211–1216. Degremont, Paris (1991)Google Scholar
  46. 46.
    Robinson-Lora, M., Brennan, R.: Biosorption of manganese onto chitin and associated proteins during the treatment of mine impacted water. Chem. Eng. J. 162, 565–572 (2010).  https://doi.org/10.1016/j.cej.2010.05.063 CrossRefGoogle Scholar
  47. 47.
    Brazil, National Environment Council - Resolução CONAMA 357/2005. Establishes provisions for the classification of water bodies as well as environmental directives for their framework, establishes conditions and standards for effluent releases and makes other provisions, (2005)Google Scholar
  48. 48.
    Ong, S., Seng, C., Lim, P.: Kinetics of adsorption of Cu (II) and Cd (II) from aqueous solution on husk and modified rice husk. Electron. J. Environ. Agric. Food Chem. 6(2), 1764–1774, (2007)Google Scholar
  49. 49.
    Ho, Y., McKay, G.: The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 735–742 (2000).  https://doi.org/10.1016/S0043-1354(99)00232-8 nº 3CrossRefGoogle Scholar
  50. 50.
    Wu, F., Tseng, R., Juang, R.: Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366–373 (2009).  https://doi.org/10.1016/j.cej.2009.01.014 nº 2CrossRefGoogle Scholar
  51. 51.
    Taylor, R., Hassan, K., Mehadi, A., Shuford, J.: Kinetics of zinc sorption by soils. Commun. Soil Sci. Plant Anal. 26(11–12), 1761–1771 (1995).  https://doi.org/10.1080/00103629509369407 Google Scholar
  52. 52.
    Siu, P., Koong, L., Saleem, J., Barford, J., McKay, G.: Equilibrium and kinetics of copper ions removal from wastewater by ion exchange. Chin. J. of Chem. Eng. 24, 94–100 (2016).  https://doi.org/10.1016/j.cjche.2015.06.017 nº 1CrossRefGoogle Scholar
  53. 53.
    Ho, Y., McKay, G.: Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Rev. 29(2), 189–232 (2000).  https://doi.org/10.1081/SPM-100100009 CrossRefGoogle Scholar
  54. 54.
    Nuñez-Gómez, D.. Potencial da casca de camarão para remediação de águas contaminadas com drenagem ácida mineral visando seu reuso secundário não potável. Master These. Federal University os Santa catarina—Brazil, (2014)Google Scholar
  55. 55.
    Ramírez-Paredes, F.I., Manzano-Muñoz, T., Garcia-Prieto, J.C., Bello-Estévez, J.F., Zhadan, G.G., Shnyrov, V.L., Roig, M.G.: Biosorption of heavy metals from acid mine drainages onto pig bristles, poultry feathers and crustacean shells industrial biowastes. J. Basic Appl. Sci. 9, 510 (2013).  https://doi.org/10.6000/1927-5129.2013.09.66 Google Scholar
  56. 56.
    Hodaifa, G., Ochando-Pulido, J.M., Alami, S.B.D., Rodriguez-Vives, S., Martinez-Ferez, A.: Kinetic and thermodynamic parameters of iron adsorption onto olive stones. Ind. Crops Prod. 49, 526–534 (2013).  https://doi.org/10.1016/j.indcrop.2013.05.039 CrossRefGoogle Scholar
  57. 57.
    Pinto, P.X., Al-Abed, S.R., Reisman, D.J.: Biosorption of heavy metals from mining influenced water onto chitin products. Chem. Engineering J. 166(3), 1002–1009 (2011).  https://doi.org/10.1016/j.cej.2010.11.091 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Dámaris Núñez-Gómez
    • 1
  • Flávio Rubens Lapolli
    • 1
  • Maria Elisa Nagel-Hassemer
    • 1
  • María Ángeles Lobo-Recio
    • 1
    • 2
    Email author
  1. 1.Department of Environmental EngineeringFederal University of Santa Catarina (UFSC)FlorianópolisBrazil
  2. 2.Department of Energy and SustainabilityFederal University of Santa Catarina (UFSC)AraranguáBrazil

Personalised recommendations