Up-Grading Biofuel Production by Co-pyrolysis of Landfill Leachate Concentrate and Sewage Sludge Mixture

  • Aïda Ben Hassen-Trabelsi
  • Amjad KallelEmail author
  • Emna Ben Amor
  • Afef Cherbib
  • Slim Naoui
  • Ismail Trabelsi
Original Paper


The co-pyrolysis of landfill leachate concentrate (LC) generated by reverse osmosis leachate treatment units and sewage sludge (SS) mixture was performed at laboratory scale fixed-bed reactor under nitrogen atmosphere, in order to produce high-grade pyrolytic liquid. The results show that 550 °C as pyrolysis temperature, 10 °C min−1 as heating rate and − 5 °C as condensation temperature seem to be the optimum conditions considering maximum bio-oil yield and properties. LC and SS co-pyrolysis produced great amounts of liquid and gas but less bio-char than that of pyrolysis of SS solely. The addition of LC into SS not only increased the bio-oil yield (from 25 wt% of SS pyrolysis to 31 wt% for LC:SS-30:70 co-pyrolysis); but also improved its properties (with more aliphatic hydrocarbons content). The released gas from co-pyrolysis showed good H2 concentration and high light hydrocarbon (CH4 and CnHm) content, and thus gave a good heating value (from 8.48 MJ kg−1 for SS pyrolysis to 12.29 MJ kg−1 for LC:SS co-pyrolysis). The results also revealed that LC with SS co-pyrolysis had a positive synergistic effect on the liquid and gaseous yields and highlighted the robustness of this approach to handle such harmful and highly abundant wastes (SS and LC) and convert them into useful/sustainable products (chemicals and biofuels).


Leachate concentrate Sewage sludge Pyrolysis Co-pyrolysis Bio-oil Syngas 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Alvarez, J., Amutio, M., Lopez, G., Barbarias, I., Bilbao, J., Olazar, M.: Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor. Chem. Eng. J. 273, 173–183 (2015). CrossRefGoogle Scholar
  2. 2.
    Fonts, I., Azuara, M., Gea, G., Murillo, M.B.: Study of the pyrolysis liquids obtained from different sewage sludge. J. Anal. Appl. Pyrol. 85(1–2), 184–191 (2009). CrossRefGoogle Scholar
  3. 3.
    Abnisa, F., Daud, W.M.A.W.: A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag. 87, 71–85 (2014). CrossRefGoogle Scholar
  4. 4.
    Martínez, J.D., Veses, A., Mastral, A.M., Murillo, R., Navarro, M.V., Puy, N., Artigues, A., Bartrolí, J., García, T.: Co-pyrolysis of biomass with waste tyres: upgrading of liquid bio-fuel. Fuel Process. Technol. 119, 263–271 (2014). CrossRefGoogle Scholar
  5. 5.
    Abnisa, F., Wan Daud, W.M.A., Ramalingam, S., Azemi, M.N.B.M., Sahu, J.N.: Co-pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel. Fuel 108, 311–318 (2013). CrossRefGoogle Scholar
  6. 6.
    Aboulkas, A., Makayssi, T., Bilali, L., El harfi, K., Nadifiyine, M., Benchanaa, M.: Co-pyrolysis of oil shale and high density polyethylene: structural characterization of the oil. Fuel Process. Technol. 96, 203–208 (2012). CrossRefGoogle Scholar
  7. 7.
    Guo, M., Bi, J.-C.: Characteristics and application of co-pyrolysis of coal/biomass blends with solid heat carrier. Fuel Process. Technol. 138, 743–749 (2015). CrossRefGoogle Scholar
  8. 8.
    Jin, L.e., Wang, L., Su, L., Cao, Q.: Characteristics of gases from co-pyrolysis of sawdust and tires. Int. J. Green Energy 9(8), 719–730 (2012). CrossRefGoogle Scholar
  9. 9.
    Onay, O., Koca, H.: Determination of synergetic effect in co-pyrolysis of lignite and waste tyre. Fuel 150, 169–174 (2015). CrossRefGoogle Scholar
  10. 10.
    Sarkar, A., Chowdhury, R.: Co-pyrolysis of paper waste and mustard press cake in a semi-batch pyrolyzer—optimization and bio-oil characterization. Int. J. Green Energy 13(4), 373–382 (2014). CrossRefGoogle Scholar
  11. 11.
    Wang, S., Wang, Q., Hu, Y.M., Xu, S.N., He, Z.X., Ji, H.S.: Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique. J. Anal. Appl. Pyrol. 114, 109–118 (2015). CrossRefGoogle Scholar
  12. 12.
    Zaafouri, K., Ben Hassen Trabelsi, A., Krichah, S., Ouerghi, A., Aydi, A., Claumann, C.A., André Wüst, Z., Naoui, S., Bergaoui, L., Hamdi, M.: Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: experimental study and process modeling. Biores. Technol. 207, 387–398 (2016). CrossRefGoogle Scholar
  13. 13.
    Yi, S., He, X., Lin, H., Zheng, H., Li, C., Li, C.: Synergistic effect in low temperature co-pyrolysis of sugarcane bagasse and lignite. Korean J. Chem. Eng. 33(10), 2923–2929 (2016). CrossRefGoogle Scholar
  14. 14.
    Chen, W., Shi, S., Zhang, J., Chen, M., Zhou, X.: Co-pyrolysis of waste newspaper with high-density polyethylene: synergistic effect and oil characterization. Energy Convers. Manag. 112, 41–48 (2016). CrossRefGoogle Scholar
  15. 15.
    Pérez-González, A., Urtiaga, A.M., Ibáñez, R., Ortiz, I.: State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res. 46(2), 267–283 (2012). CrossRefGoogle Scholar
  16. 16.
    Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., Moulin, P.: Landfill leachate treatment: review and opportunity. J. Hazard. Mater. 150(3), 468–493 (2008). CrossRefGoogle Scholar
  17. 17.
    Dialynas, E., Mantzavinos, D., Diamadopoulos, E.: Advanced treatment of the reverse osmosis concentrate produced during reclamation of municipal wastewater. Water Res. 42(18), 4603–4608 (2008). CrossRefGoogle Scholar
  18. 18.
    Gabelich, C.J., Xu, P., Cohen, Y.: Chap. 10 concentrate treatment for inland desalting. In: Escobar, I.C., Schäfer, A. (eds.) Sustainable Water for the Future: Water Recycling Versus Desalination. pp. 295–326. Elsevier, Amsterdam (2010)CrossRefGoogle Scholar
  19. 19.
    Kallel, A., Ellouze, M., Trabelsi, I.: Co-management of landfill leachate concentrate with brick waste by solidification/stabilization treatment. Arab. J. Geosci. 10(4), 81 (2017). CrossRefGoogle Scholar
  20. 20.
    APHA: Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association. American Water Works Association and Water Environment Federation, Washington, D.C. (1999)Google Scholar
  21. 21.
    AFNOR: Qualité de l’eau Dosage de l’ammonium Partie 1: Méthode par titrimétrie après entraînement à la vapeur. In: NF T90-015-1. AFNOR, (2000)Google Scholar
  22. 22.
    AFNOR: Solid biofuels—AFNOR XP CEN/TS 14774-3; AFNOR XP CEN/TS 14775; AFNOR XP CEN/TS 15148. In. AFNOR, (2010)Google Scholar
  23. 23.
    Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., Belayouni, H.: Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char. Waste Manag. 34(1), 210–218 (2014). CrossRefGoogle Scholar
  24. 24.
    Omar, R., Idris, A., Yunus, R., Khalid, K., Aida Isma, M.I.: Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel 90(4), 1536–1544 (2011). CrossRefGoogle Scholar
  25. 25.
    Uçar, S., Karagöz, S.: Co-pyrolysis of pine nut shells with scrap tires. Fuel 137, 85–93 (2014). CrossRefGoogle Scholar
  26. 26.
    Ben Hassen Trabelsi, A., Jaouachi, N., Naoui, S., Kraiem, T., Zaafouri, K.: Hydrogen-rich syngas production from pyrolysis and gasification of palmitic fibers. Paper presented at the IREC2015 The Sixth International Renewable Energy Congress, 2015/03Google Scholar
  27. 27.
    Chen, G., Zhang, X., Ma, W., Yan, B., Li, Y.: Co-pyrolysis of corn-cob and waste cooking-oil in a fixed bed reactor with HY upgrading process. Energy Proced. 61, 2363–2366 (2014). CrossRefGoogle Scholar
  28. 28.
    Delgado, R., Rosas, J.G., Gómez, N., Martínez, O., Sanchez, M.E., Cara, J.: Energy valorisation of crude glycerol and corn straw by means of slow co-pyrolysis: production and characterisation of gas, char and bio-oil. Fuel 112, 31–37 (2013). CrossRefGoogle Scholar
  29. 29.
    Samanya, J., Hornung, A., Apfelbacher, A., Vale, P.: Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw. J. Anal. Appl. Pyrol. 94, 120–125 (2012). CrossRefGoogle Scholar
  30. 30.
    Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006). CrossRefGoogle Scholar
  31. 31.
    Vanhege, K., Verhaege, M., Verstraete, W.: Indirect electrochemical oxidation of reverse osmosis membrane concentrates at boron-doped diamond electrodes. Electrochem. Commun. 4(4), 296–300 (2002). CrossRefGoogle Scholar
  32. 32.
    Zhou, T., Lim, T.-T., Chin, S.-S., Fane, A.G.: Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment. Chem. Eng. J. 166(3), 932–939 (2011). CrossRefGoogle Scholar
  33. 33.
    Liu, K., Roddick, F.A., Fan, L.: Impact of salinity and pH on the UVC/H2O2 treatment of reverse osmosis concentrate produced from municipal wastewater reclamation. Water Res. 46(10), 3229–3239 (2012). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratory of Wind Energy Control and Waste Energy RecoveryResearch and Technology Centre of Energy (CERTE)Borj-CedriaTunisia
  2. 2.Laboratory of Water, Energy and Environment, Sfax National School of EngineeringUniversity of SfaxSfaxTunisia
  3. 3.Laboratory of Wastewater Treatment and ValorizationResearch and Technologies Center (CERTE)Borj-CedriaTunisia

Personalised recommendations