Evaluation of Industrial Sour Cherry Liquor Wastes as an Ecofriendly Source of Added Value Chemical Compounds and Energy

  • Elisabete Muchagato MaurícioEmail author
  • Catarina Rosado
  • Maria Paula Duarte
  • Ana Luísa FernandoEmail author
  • Ana M. Díaz-Lanza
Original Paper


There has been a growing interest in the recovery and valorization of chemical products from biomass wastes. In the present study pomace from sour cherry liquor was analyzed in order to evaluate its potential for valorization. Two different samples of liquor pomace and two different extraction methods were screened through determination of their phenolic content (HPLC/PDA) and antioxidant activity (FRAP and DPPH assay). Results obtained showed that skins (pomace without kernel) presented a higher extraction yield, polyphenolic content and antioxidant activity than pomace with kernel (skin+kernel). Decoction at 100 °C allowed a higher recovery of phenolic compounds, but, maceration with water at 25 °C was considered a more sustainable process. HPLC analyses allowed the identification and quantification of phenolic compounds such as cyanidin-3-O-glucoside, (+)catechin and (−)epicatechin and some phenolic acids. The analyzed by-products might be a promising source of natural polyphenolic compounds, which can act as a new eco-friendly antioxidant ingredient, with potential to be incorporated in nutraceutical formulations or applied in food or cosmetic industries. The residues remaining after extraction have a high calorific value and fat content, suggesting its valorization as a source of energy or through the extraction of value-added oil.


Agro-industrial waste Antioxidant activity Biorefinery Liquor industries Phenolic compounds Sour cherry liquor 


  1. 1.
    European Environment Agency: Food security and environmental impacts. EEA. (2014). Accessed 24 Feb 2017
  2. 2.
    Yılmaz, F.M., Karaaslan, M., Vardin, H.: Optimization of extraction parameters on the isolation of phenolic compounds from sour cherry (Prunus cerasus L.) pomace. J. Food Sci. Technol. 52(5), 2851–2859 (2015). CrossRefGoogle Scholar
  3. 3.
    European Environment Agency: Circular economy in Europe. Developing the knowledge base. (2016). Accessed 20 July 2017
  4. 4.
    Ghisellini, P., Cialani, C., Ulgiati, S.: A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean. Prod. 114, 11–32 (2016)CrossRefGoogle Scholar
  5. 5.
    Sauvé, S., Bernard, S., Sloan, P.: Environmental sciences, sustainable development and circular economy: alternative concepts for trans-disciplinary research. Environ. Dev. 17, 48–56 (2016)CrossRefGoogle Scholar
  6. 6.
    Bonilla, F., Mayen, M., Merida, J., Medina, M.: Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chem. 66(2), 209–215 (1999). CrossRefGoogle Scholar
  7. 7.
    Anastasiadi, M., Pratsinis, H., Kletsas, D., Skaltsounis, A.L., Haroutounian, S.A.: Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts. Food Res. Int. 43(3), 805–813 (2010). CrossRefGoogle Scholar
  8. 8.
    Wijngaard, H., Hossain, M.B., Rai, D.K., Brunton, N.: Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 46(2), 505–513 (2012). CrossRefGoogle Scholar
  9. 9.
    Kumcuoglu, S., Yilmaz, T., Tavman, S.: Ultrasound assisted extraction of lycopene from tomato processing wastes. J. Food Sci. Technol. 51(12), 4102–4107 (2014). CrossRefGoogle Scholar
  10. 10.
    Boonchu, T., Utama-ang, N.: Optimization of extraction and microencapsulation of bioactive compounds from red grape (Vitis vinifera L.) pomace. J Food Sci. Technol. 52(2), 783–792 (2013). CrossRefGoogle Scholar
  11. 11.
    Wang, R., Lechtenberg, M., Sendker, J., Petereit, F., Deters, A., Hensel, A.: Wound-healing plants from TCM: in vitro investigations on selected TCM plants and their influence on human dermal fibroblasts and keratinocytes. Fitoterapia 84, 308–317 (2013). CrossRefGoogle Scholar
  12. 12.
    Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J.C., Lorquin, J., Delattre, M., Labat, M.: Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75(4), 501–507 (2001). CrossRefGoogle Scholar
  13. 13.
    Bouzid, O., Navarro, D., Roche, M., Asther, M., Haon, M., Delattre, M., Lesage-Meessen, L.: Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process Biochem. 40(5), 1855–1862 (2005). CrossRefGoogle Scholar
  14. 14.
    De Marco, E., Savarese, M., Paduano, A., Sacchi, R.: Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 104(2), 858–867 (2007). CrossRefGoogle Scholar
  15. 15.
    Bouaziz, M., Lassoued, S., Bouallagui, Z., Smaoui, S., Gargoubi, A., Dhouib, A., Sayadi, S.: Synthesis and recovery of high bioactive phenolics from table-olive brine process wastewater. Bioorg. Med. Chem. 16(20), 9238–9246 (2008). CrossRefGoogle Scholar
  16. 16.
    Sudjana, A.N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N., Hammer, K.A.: Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents 33(5), 461–463 (2009). CrossRefGoogle Scholar
  17. 17.
    Ignat, I., Volf, I., Popa, V.I.: A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126(4), 1821–1835 (2011). CrossRefGoogle Scholar
  18. 18.
    Moure, A., Cruz, J.M., Franco, D., Domínguez, J.M., Sineiro, J., Domínguez, H., Parajó, J.C.: Natural antioxidants from residual sources. Food Chem. 72(2), 145–171 (2001). CrossRefGoogle Scholar
  19. 19.
    Kumar, P.S., Kumar, N.A., Sivakumar, R., Kaushik, C.: Experimentation on solvent extraction of polyphenols from natural waste. J. Mater. Sci. 44(21), 5894–5899 (2009). CrossRefGoogle Scholar
  20. 20.
    Wijngaard, H.H., Rößle, C., Brunton, N.: A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chem. 116(1), 202–207 (2009). CrossRefGoogle Scholar
  21. 21.
    Laroze, L.E., Díaz-Reinoso, B., Moure, A., Zúñiga, M.E., Domínguez, H.: Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. Eur. Food Res. Technol. 231(5), 669–677 (2010). CrossRefGoogle Scholar
  22. 22.
    Bocco, A., Cuvelier, M.E., Richard, H., Berset, C.: Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agric. Food Chem. 46(6), 2123–2129 (1998). CrossRefGoogle Scholar
  23. 23.
    Schieber, A., Hilt, P., Streker, P., Endreß, H.U., Rentschler, C., Carle, R.: A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innov. Food Sci. Emerg. Technol. 4(1), 99–107 (2003). CrossRefGoogle Scholar
  24. 24.
    Wolfe, K.L., Liu, R.H.: Apple peels as a value-added food ingredient. J. Agric. Food Chem. 51(6), 1676–1683 (2003). CrossRefGoogle Scholar
  25. 25.
    Chaovanalikit, A., Wrolstad, R.E.: Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. J. Food Sci. 69(1), FCT67–FCT72 (2004). Google Scholar
  26. 26.
    Fan, G., Han, Y., Gu, Z., Chen, D.: Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). LWT-Food Sci. Technol. 41(1), 155–160 (2008). CrossRefGoogle Scholar
  27. 27.
    Frutóbidos: Personal communication, Óbidos, Portugal (2013)Google Scholar
  28. 28.
    Larrosa, M., Llorach, R., Espín, J.C., Tomás-Barberán, F.A.: Increase of antioxidant activity of tomato juice upon functionalisation with vegetable byproduct extracts. LWT-Food Sci. Technol. 35(6), 532–542 (2002). CrossRefGoogle Scholar
  29. 29.
    Lapornik, B., Prošek, M., Golc Wondra, A.: Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 71(2), 214–222 (2005). CrossRefGoogle Scholar
  30. 30.
    McCune, L.M., Kubota, C., Stendell-Hollis, N.R., Thomson, C.A.: Cherries and health: a review. Crit. Rev. Food Sci. Nutr. 51(1), 1–12 (2010). CrossRefGoogle Scholar
  31. 31.
    Maurício, E., Rosado, C., Duarte, M.P., Lanza, A.M.D.: Application of Óbidos “Ginjinha” by-products in topical formulations: a preliminary study. Biomed. Biopharm. Res. 1(10), 83–90 (2013)Google Scholar
  32. 32.
    Wojdyło, A., Nowicka, P., Laskowski, P., Oszmiański, J.: Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J. Agric. Food Chem. 62(51), 12332–12345 (2014). CrossRefGoogle Scholar
  33. 33.
    Tsanova-Savova, S., Ribarova, F., Gerova, M.: (+)-Catechin and (−)epicatechin in Bulgarian fruits. J. Food Compos. Anal. 18(7), 691–698 (2005). CrossRefGoogle Scholar
  34. 34.
    Piccolella, S., Fiorentino, A., Pacifico, S., D’Abrosca, B., Uzzo, P., Monaco, P.: Antioxidant properties of sour cherries (Prunus cerasus L.): role of colorless phytochemicals from the methanolic extract of ripe fruits. J. Agric. Food Chem. 56(6), 1928–1935 (2008). CrossRefGoogle Scholar
  35. 35.
    Galluzzo, P., Martini, C., Bulzomi, P., Leone, S., Bolli, A., Pallottini, V., Marino, M.: Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor α-dependent mechanisms. Mol. Nutr. Food Res. 53(6), 699–708 (2009). CrossRefGoogle Scholar
  36. 36.
    Serra, A.T., Duarte, R.O., Bronze, M.R., Duarte, C.M.: Identification of bioactive response in traditional cherries from Portugal. Food Chem. 125(2), 318–325 (2011). CrossRefGoogle Scholar
  37. 37.
    Ferretti, G., Bacchetti, T., Belleggia, A., Neri, D.: Cherry antioxidants: from farm to table. Molecules 15(10), 6993–7005 (2010). CrossRefGoogle Scholar
  38. 38.
    Seeram, N.P., Momin, R.A., Nair, M.G., Bourquin, L.D.: Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8(5), 362–369 (2001). CrossRefGoogle Scholar
  39. 39.
    Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F., Brouillard, R.: Analysis and biological activities of anthocyanins. Phytochemistry 64(5), 923–933 (2003). CrossRefGoogle Scholar
  40. 40.
    Blando, F., Gerardi, C., Nicoletti, I.: Sour cherry (Prunus cerasus L.) anthocyanins as ingredients for functional foods. BioMed Res. Int. 2004(5), 253–258 (2004). Google Scholar
  41. 41.
    Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J.A., Bagchi, D.: Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 51(6), 675–683 (2007). CrossRefGoogle Scholar
  42. 42.
    Siddiq, M., Iezzoni, A., Khan, A., Breen, P., Sebolt, A.M., Dolan, K.D., Ravi, R.: Characterization of new tart cherry (Prunus cerasus L.): selections based on fruit quality, total anthocyanins, and antioxidant capacity. Int. J. Food Prop. 14(2), 471–480 (2011). CrossRefGoogle Scholar
  43. 43.
    Mulabagal, V., Lang, G.A., DeWitt, D.L., Dalavoy, S.S., Nair, M.G.: Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 57(4), 1239–1246 (2009). CrossRefGoogle Scholar
  44. 44.
    Seymour, E.M., Lewis, S.K., Urcuyo-Llanes, D.E., Tanone, I.I., Kirakosyan, A., Kaufman, P.B., Bolling, S.F.: Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. J. Med. Food. 12(5), 935–942 (2009). CrossRefGoogle Scholar
  45. 45.
    Liu, Q., Cai, W., Shao, X.: Determination of seven polyphenols in water by high performance liquid chromatography combined with preconcentration. Talanta 77(2), 679–683 (2008). CrossRefGoogle Scholar
  46. 46.
    Nowicka, P., Wojdyło, A., Lech, K., Figiel, A.: Chemical composition, antioxidant capacity, and sensory quality of dried sour cherry fruits pre-dehydrated in fruit concentrates. Food Bioprocess Technol. 8(10), 2076–2095 (2015). CrossRefGoogle Scholar
  47. 47.
    Kim, D.O., Heo, H.J., Kim, Y.J., Yang, H.S., Lee, C.Y.: Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agric. Food Chem. 53(26), 9921–9927 (2005). CrossRefGoogle Scholar
  48. 48.
    Bak, I., Lekli, I., Juhasz, B., Nagy, N., Varga, E., Varadi, J., Tosaki, A.: Cardioprotective mechanisms of Prunus cerasus (sour cherry) seed extract against ischemia-reperfusion-induced damage in isolated rat hearts. Am. J. Physiol. Heart Circ. Physiol. 291(3), H1329–H1336 (2006). CrossRefGoogle Scholar
  49. 49.
    Koşar, M., Göger, F., Can Başer, K.H.: In vitro antioxidant properties and phenolic composition of Salvia virgata Jacq. from Turkey. J. Agric. Food Chem. 56(7), 2369–2374 (2008). CrossRefGoogle Scholar
  50. 50.
    Prior, R.L., Wu, X., Schaich, K.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53(10), 4290–4302 (2005). CrossRefGoogle Scholar
  51. 51.
    Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., Aruoma, O.I.: Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology 278(1), 75–87 (2010). CrossRefGoogle Scholar
  52. 52.
    AOAC: Official Methods of Analysis. Agricultural Chemicals; Contaminants; Drugs, 15th edn. Association of Official Chemists, Arlington (1990)Google Scholar
  53. 53.
    Barros, L., Carvalho, A.M., Morais, J.S., Ferreira, I.C.F.R.: Strawberry-tree, blackthorn and rose fruits: Detailed characterization in nutrients and phytochemicals with antioxidant properties. Food Chem. 120, 247–254 (2010)CrossRefGoogle Scholar
  54. 54.
    Kosmala, M., Milala, J., Kołodziejczyk, K., Markowski, J., Mieszczakowska, M., Ginies, C., Renard, C.M.: Characterization of cell wall polysaccharides of cherry (Prunus cerasus var. Schattenmorelle) fruit and pomace. Plant Food Hum. Nutr. 64(4), 279–285 (2009). CrossRefGoogle Scholar
  55. 55.
    Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., Larondelle, Y.: Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep. Pur. Technol. 55(2), 217–225 (2007). CrossRefGoogle Scholar
  56. 56.
    Conde, E., Moure, A., Domínguez, H., Parajó, J.C.: Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT-Food Sci. Technol. 44(2), 436–442 (2011). CrossRefGoogle Scholar
  57. 57.
    Rødtjer, A., Skibsted, L.H., Andersen, M.L.: Antioxidative and prooxidative effects of extracts made from cherry liqueur pomace. Food Chem. 99(1), 6–14 (2006). CrossRefGoogle Scholar
  58. 58.
    Patras, A., Brunton, N.P., O’Donnell, C., Tiwari, B.K.: Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 21(1), 3–11 (2010). CrossRefGoogle Scholar
  59. 59.
    Kulisic-Bilusic, T., Schnäbele, K., Schmöller, I., Dragovic-Uzelac, V., Krisko, A., Dejanovic, B., Pifat, G.: Antioxidant activity versus cytotoxic and nuclear factor kappa B regulatory activities on HT-29 cells by natural fruit juices. Eur. Food Res. Technol. 228(3), 417–424 (2009). CrossRefGoogle Scholar
  60. 60.
    Liu, Y., Liu, X., Zhong, F., Tian, R., Zhang, K., Zhang, X., Li, T.: Comparative study of phenolic compounds and antioxidant activity in different species of cherries. J. Food Sci. 76(4), C633–C638 (2011)CrossRefGoogle Scholar
  61. 61.
    Simsek, M., Sumnu, G., Sahin, S.: Microwave assisted extraction of phenolic compounds from sour cherry pomace. Sep. Sci. Technol. 47, 1248–1254 (2012). CrossRefGoogle Scholar
  62. 62.
    González-Gómez, D., Lozano, M., Fernández-León, M.F., Bernalte, M.J., Ayuso, M.C., Rodríguez, A.B.: Sweet cherry phytochemicals: Identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). J. Food Compos. Anal. 23(6), 533–539 (2010). CrossRefGoogle Scholar
  63. 63.
    Hassimotto, N.M.A., Genovese, M.I., Lajolo, F.M.: Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 53(8), 2928–2935 (2005). CrossRefGoogle Scholar
  64. 64.
    Cacace, J.E., Mazza, G.: Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 59(4), 379–389 (2003). CrossRefGoogle Scholar
  65. 65.
    Wang, H., Nair, M.G., Strasburg, G.M., Booren, A.M., Gray, J.I.: Antioxidant polyphenols from tart cherries (Prunus cerasus). J. Agric. Food Chem. 47(3), 840–844 (1999). CrossRefGoogle Scholar
  66. 66.
    Nassi o Di Nasso, N., Angelini, L.G., Bonari, E.: Influence of fertilisation and harvest time on fuel quality of giant reed (Arundo donax L.) in central Italy. Eur. J. Agron. 32, 219–227 (2010). CrossRefGoogle Scholar
  67. 67.
    Lammens, T.M., Vis, M., de Groot, H., Vanmeulebrouk, V., Staritsky, I., Elbersen, B., Annevelink, E., Elbersen, W., Alakangas, E., van den Berg, D.: Bio2match: a tool for optimizing the match between lignocellulosic biomass and conversion technologies. In: Faaij, A.P.C., Baxter, D., Grassi, A., Helm, P. (eds.), Proceedings of the 24th European Biomass Conference and Exhibition, pp. 1381–1386. ETA-Florence Renewable Energies (2016)Google Scholar
  68. 68.
    Fernando, A.L., Costa, J., Barbosa, B., Monti, A., Rettenmaier, N.: Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenergy. (2017). Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Universidade Lusófona de Humanidades e Tecnologias (CBIOS – Unidade de Dermatologia Experimental)LisboaPortugal
  2. 2.Elisa Câmara, LdaS. Domingos de RanaPortugal
  3. 3.Metrics/DCTB, Faculdade de Ciências e Tecnologia, FCTUniversidade Nova de LisboaCaparicaPortugal
  4. 4.Laboratorio de Farmacognosia, Área de Farmacología, Departamento de Ciências BiomédicasUniversidad de Alcalá de HenaresMadridSpain

Personalised recommendations