Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 12, pp 3567–3577 | Cite as

Effect of Torrefaction Prior to Biomass Size Reduction on Ethanol Production

  • Suresh ChaluvadiEmail author
  • Amit Ujjwal
  • R. K. Singh
Original Paper
  • 163 Downloads

Abstract

Biomass size reduction is a key operation in the process of ethanol production from lignocellulosic materials, since enzymatic saccharification of carbohydrate polymers occurs at the molecular level. Torrefaction technique has been used widely in increasing energy density, hydrophobicity, grindability, enhancing pore structure and reducing the cost of transportation. The aim of this study was to employ torrefaction prior to size reduction of sugarcane bagasse (SB) and waste jute caddies (WJC) and also to investigate its effect on biomass structure, glucose and ethanol yields. The torrefaction experiments of SB and WJC were performed at temperatures of 160, 180, 200 and 220 °C and residence times of 20, 40, and 60 min. The crystallinity and chemical nature of biomass materials were analyzed by XRD and FTIR. The pore structure was also examined for pretreated and untreated samples. The sugarcane bagasse pretreated at 200 °C for 20 min and waste jute caddies pretreated at 180 °C for 40 min were observed to produce highest glucose yields of 199.62 and 234.77 mg g−1, respectively after saccharification. Furthermore, these pretreated SB and WJC under anaerobic fermentation with supplementation of cysteine hydrochloride were noticed to produce ethanol yields of 81.85 and 95.08 mg g−1, respectively. Also, these ethanol yields represent 19.34% increase for SB and 20.28% increase for WJC when compared with ethanol yields of untreated biomass fermented under anaerobic conditions with cysteine hydrochloride supplement. The study demonstrates the possibility of incorporating torrefaction before size reduction in bioethanol production process. In addition, cysteine hydrochloride supplementation enhances ethanol yields through anaerobic fermentation.

Keywords

Torrefaction Bioethanol Biomass Pretreatment Jute caddies Bagasse 

Abbreviations

SB

Sugarcane bagasse

WJC

Waste jute caddies

FAO

Food and agriculture organization

ASL

Acid soluble lignin

AIL

Acid insoluble lignin

XRD

X-ray diffraction

CrI

Crystallinity index

FTIR

Fourier transform infrared spectroscopy

HMF

Hydroxymethylfurfural

MTCC

Microbial type culture collection

Notes

Acknowledgements

The authors are thankful for the research support to Department of Chemical Engineering, National Institute of Technology, Rourkela, India.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sindhu, R., Gnansounou, E., Binod, P., Pandey, A.: Bioconversion of sugarcane crop residue for value added products—an overview. Renew. Energy 98, 203–215 (2016).  https://doi.org/10.1016/j.renene.2016.02.057 CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Singh, J.: A roadmap for production of sustainable, consistent and reliable electric power from agricultural biomass—an Indian perspective. Energy Policy 92, 246–254 (2016).  https://doi.org/10.1016/j.enpol.2016.02.013 CrossRefGoogle Scholar
  4. 4.
    Suhas, V.K., Carrott, P.J.M., Singh, R., Chaudhary, M., Kushwaha, S.: Cellulose: a review as natural, modified and activated carbon adsorbent: biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies. Bioresour. Technol. 216, 1066–1076 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., Zhou, G., Yuan, Z.: Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour. Technol. 199, 68–75 (2016)CrossRefGoogle Scholar
  6. 6.
    Behera, S., Arora, R., Nandhagopal, N., Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014).  https://doi.org/10.1016/j.rser.2014.04.047 CrossRefGoogle Scholar
  7. 7.
    Steinbach, D., Kruse, A., Sauer, J.: Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production—a review. Biomass Convers. Biorefinery 7, 247–274 (2017)CrossRefGoogle Scholar
  8. 8.
    Bach, Q.V., Skreiberg, O.: Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction. Renew. Sustain. Energy Rev. 54, 665–677 (2016).  https://doi.org/10.1016/j.rser.2015.10.014 CrossRefGoogle Scholar
  9. 9.
    Granados, D., Chejne, F., Basu, P.: A two dimensional model for torrefaction of large biomass particles. J. Anal. Appl. Pyrol. 120, 1–14(2016)CrossRefGoogle Scholar
  10. 10.
    Chen, Y.H., Chang, C.C., Chang, C.Y., Yuan, M.H., Ji, D.R., Shie, J.L., Lee, C.H., Chen, Y.H., Chang, W.R., Yang, T.Y., Hsu, T.C., Huang, M., Wu, C.H., Lin, F.C., Ko, C.H.: Production of a solid bio-fuel from waste bamboo chopsticks by torrefaction for cofiring with coal. J. Anal. Appl. Pyrol. 126, 315–322 (2017).  https://doi.org/10.1016/j.jaap.2017.05.015 CrossRefGoogle Scholar
  11. 11.
    Mahadevan, R., Adhikari, S., Shakya, R., Wang, K., Dayton, D.C., Li, M., Pu, Y., Ragauskas, A.J.: Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis. J. Anal. Appl. Pyrol. 122, 95–105 (2016).  https://doi.org/10.1016/j.jaap.2016.10.011 CrossRefGoogle Scholar
  12. 12.
    Repellin, V., Govin, A., Rolland, M., Guyonnet, R.: Energy requirement for fine grinding of torrefied wood. Biomass Bioenergy 34, 923–930 (2010).  https://doi.org/10.1016/j.biombioe.2010.01.039 CrossRefGoogle Scholar
  13. 13.
    Chiaramonti, D., Rizzo, A.M., Prussi, M., Tedeschi, S., Zimbardi, F., Braccio, G., Viola, E., Pardelli, P.T.: 2nd Generation lignocellulosic bioethanol: is torrefaction a possible approach to biomass pretreatment? Biomass Convers. Biorefinery 1, 9–15 (2011).  https://doi.org/10.1007/s13399-010-0001-z CrossRefGoogle Scholar
  14. 14.
    Bergman, P., Boersma, A., Zwart, R.W., Kiel, J.H.: Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Centre of Netherlands, Report No. ECN-C-05-013. (2005)Google Scholar
  15. 15.
    Sadaka, S., Negi, S.: Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ. Prog. Sustain. Energy 28, 427–434 (2009).  https://doi.org/10.1002/ep.10392 CrossRefGoogle Scholar
  16. 16.
    Zhu, J.Y., Pan, X.J.: Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour. Technol. 101, 4992–5002 (2010).  https://doi.org/10.1016/j.biortech.2009.11.007 CrossRefGoogle Scholar
  17. 17.
    Champagne, P.: Feasibility of producing bio-ethanol from waste residues: a Canadian perspective. Feasibility of producing bio-ethanol from waste residues in Canada. Resour. Conserv. Recycl. 50, 211–230 (2007)CrossRefGoogle Scholar
  18. 18.
    Sheikh, M.M.I., Kim, C.H., Park, H.J., Kim, S.H., Kim, G.C., Lee, J.Y., Sim, S.W., Kim, J.W.: Influence of torrefaction pretreatment for ethanol fermentation from waste money bills. Biotechnol. Appl. Biochem. 60, 203–209 (2013).  https://doi.org/10.1002/bab.1070 CrossRefGoogle Scholar
  19. 19.
    Sheikh, M.M.I., Kim, C.H., Park, H.J., Kim, S.H., Kim, G.C., Lee, J.Y., Sim, S.W., Kim, J.W.: Effect of torrefaction for the pretreatment of rice straw for ethanol production. J. Sci. Food Agric. 93, 3198–3204 (2013).  https://doi.org/10.1002/jsfa.6155 CrossRefGoogle Scholar
  20. 20.
    Pal, S., Joy, S., Kumbhar, P., Trimukhe, K.D., Gupta, R., Kuhad, R.C., Varma, A.J., Padmanabhan, S.: Pilot-scale pretreatments of sugarcane bagasse with steam explosion and mineral acid, organic acid, and mixed acids: synergies, enzymatic hydrolysis efficiencies, and structure-morphology correlations. Biomass Convers. Biorefinery (2016).  https://doi.org/10.1007/s13399-016-0220-z CrossRefGoogle Scholar
  21. 21.
    Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J.: Determination of total solids in biomass and total dissolved solids in liquid process samples. CiteseerGoogle Scholar
  22. 22.
    Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W.: Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 58, 9043–9053 (2010).  https://doi.org/10.1021/jf1008023 CrossRefGoogle Scholar
  23. 23.
    Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959).  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  24. 24.
    van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35, 3748–3762 (2011)Google Scholar
  25. 25.
    Phanphanich, M., Mani, S.: Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 102, 1246–1253 (2011).  https://doi.org/10.1016/j.biortech.2010.08.028 CrossRefGoogle Scholar
  26. 26.
    Wannapeera, J., Worasuwannarak, N.: Examinations of chemical properties and pyrolysis behaviors of torrefied woody biomass prepared at the same torrefaction mass yields. J. Anal. Appl. Pyrol. 115, 279–287 (2015).  https://doi.org/10.1016/j.jaap.2015.08.007 CrossRefGoogle Scholar
  27. 27.
    Chen, Y., Liu, B., Yang, H., Yang, Q., Chen, H.: Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity. Fuel 137, 41–49 (2014).  https://doi.org/10.1016/j.fuel.2014.07.036 CrossRefGoogle Scholar
  28. 28.
    Sermyagina, E., Saari, J., Zakeri, B., Kaikko, J., Vakkilainen, E.: Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant. Appl. Energy 149, 24–34 (2015).  https://doi.org/10.1016/j.apenergy.2015.03.102 CrossRefGoogle Scholar
  29. 29.
    Aboulkas, A., Nadifiyine, M., Benchanaa, M., Mokhlisse, A.: Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Process. Technol. 90, 722–728 (2009)CrossRefGoogle Scholar
  30. 30.
    Fukushima, R.S., Weimer, P.J., Kunz, D.A.: Use of photocatalytic reduction to hasten preparation of culture media for saccharolytic clostridium species. Braz. J. Microbiol. 34, 22–26 (2003).  https://doi.org/10.1590/S1517-83822003000100006 CrossRefGoogle Scholar
  31. 31.
    Rymovicz, A.U.M., Souza, R.D., Gursky, L.C., Rosa, R.T., Trevilatto, P.C., Groppo, F.C., Rosa, E.A.R.: Screening of reducing agents for anaerobic growth of Candida albicans SC5314. J. Microbiol. Methods 84, 461–466 (2011).  https://doi.org/10.1016/j.mimet.2011.01.020 CrossRefGoogle Scholar
  32. 32.
    Rada, V., Methods, J.P.-J. of M.: A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods 43(2), 127–132 (2000)CrossRefGoogle Scholar
  33. 33.
    Ranjan, A., Fuel, V.M.: Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel 112, 567–571 (2013)CrossRefGoogle Scholar
  34. 34.
    Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., Singh, S.: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101, 4900–4906 (2010).  https://doi.org/10.1016/j.biortech.2009.10.066 CrossRefGoogle Scholar
  35. 35.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)Google Scholar
  36. 36.
    Agu, R., Chiba, Y., Goodfellow, V.: Effect of germination temperatures on proteolysis of the gluten-free grains rice and buckwheat during malting and mashing. J. Agric. Food Chem. 40, 10147–10154 (2012)Google Scholar
  37. 37.
    Hsu, T.C., Guo, G.L., Chen, W.H., Hwang, W.S.: Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol. (2010).  https://doi.org/10.1016/j.biortech.2009.10.009 CrossRefGoogle Scholar
  38. 38.
    Kumar, R., Mago, G., Balan, V., Wyman, C.E.: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. (2009).  https://doi.org/10.1016/j.biortech.2009.01.075 CrossRefGoogle Scholar
  39. 39.
    Rousset, P., Lapierre, C., Pollet, B., Quirino, W., Perre, P.: Effect of severe thermal treatment on spruce and beech wood lginin. Ann. For. Sci. 66, 1 (2009)CrossRefGoogle Scholar
  40. 40.
    Xiao, B., Sun, X.F., Sun, R.C.: Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stab. (2001).  https://doi.org/10.1016/S0141-3910(01)00163-X CrossRefGoogle Scholar
  41. 41.
    Zhu, L., O’Dwyer, J.P., Chang, V.S., Granda, C.B., Holtzapple, M.T.: Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. (2008).  https://doi.org/10.1016/j.biortech.2007.07.033 CrossRefGoogle Scholar
  42. 42.
    Chen, Q., Zhou, J., Liu, B., Mei, Q., Luo, Z.: Influence of torrefaction pretreatment on biomass gasification technology. Chin. Sci. Bull. 56, 1449–1456 (2011).  https://doi.org/10.1007/s11434-010-4292-z CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations