Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3263–3270 | Cite as

Evaluation of Chemical Composition and In Vitro Antiinflammatory Effect of Marine Microalgae Chlorella vulgaris

  • Gopal Prabakaran
  • Meivelu Moovendhan
  • A. Arumugam
  • A. Matharasi
  • R. Dineshkumar
  • Pitchai SampathkumarEmail author
Original Paper


The present study was aimed to investigate the nutritional composition, chemical components and anti-inflammatory activity of C. vulgaris. The isolated microalga was mass cultured in laboratory by selective media with optimum conditions. Protein content was found to be higher for 45.23% followed by carbohydrate (23.43%) and total lipid (18.12%). Minerals components was recorded by the following order: Magnesium > Calcium > Iron > Manganese > Zinc > Copper. Seven vitamins were estimated, vitamin B3 was recorded higher (13.3 mg/100 g) and B12 has shown lesser amount (0.21 mg/100 g). The pigments chlorophyll a, b and carotenoids were found to be 4.7 mg/g, 4.2 mg/g and 6.11 mg/g respectively. Secondary metabolite was extracted by methanol and chloroform and further screened for the in vitro anti-inflammatory effect through the inhibition of albumin denaturation, antiproteinase, hypotonicity-induced haemolysis and anti-lipoxygenase assays and results have been recorded by concentration dependent. From the results, the anti-inflammatory activities of the methanolic extract were found higher than the chloroform extract at 500 µg/ml. The functional groups of the potent methanolic extract were studied by FT-IR analysis which revealed the presence of alkane, nitro and carboxyl groups.


C. vulgaris Vitamins Pigments Antiinflammatory FT-IR 



Authors are thankful to the Dean and Director, CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University for providing all necessary facilities.

Compliance with Ethical Standards

Conflict of interest

The authors declare there is no conflict of interest.


  1. 1.
    Ferreira, S.P., Soares, L.A., Costa, J.A.: Review: microalgae: an alternative source to obtain essential fatty acids. Revista de Ciências Agrárias (Portugal). 36, 275–287 (2013)Google Scholar
  2. 2.
    Volk, R.B.: A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiol. Res. 163(2), 161–167 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Iba˜nez, E., Cifuentes, A.: Benefits of using algae as natural sources of functional ingredients. J. Sci. Food Agri. 93(4), 703–709 (2013)CrossRefGoogle Scholar
  4. 4.
    Harun, R., Singh, M., Forde, G.M., Danquah, M.K.: Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energy Rev. 14(3), 1037–1047 (2010)CrossRefGoogle Scholar
  5. 5.
    Priyadarshani, I., Rath, B.: Commercial and industrial applications of micro algae – A review. J. Algal. Biomass Util. 3, 89–100 (2012)Google Scholar
  6. 6.
    Masoj´ıdek, J., Pr´aˇsil, O.: The development of microalgal biotechnology in the Czech Republic. J. Indus. Microbiol. Biotech. 37(12), 1307–1317 (2010)CrossRefGoogle Scholar
  7. 7.
    Costa, J.A.C., Morais, M.G.: Microalgae for food production. In: Soccol, C.R., Pandey, A., Larroche, C. (eds.) Fermentation Process Engineering in the Food Industry, p. 486. Taylor & Francis, Abingdon (2013)Google Scholar
  8. 8.
    Costa, J.A.V., Radmann, E.M., Cerqueira, V.S., Santos, G.C., Calheiros, M.N.: Perfil de ´acidos graxos das microalgae Chlorella vulgaris, Chlorella minutissima, cultivadas em diferentes condic¸˜oes. Alimentos e Nutric¸˜ao Araraquara. 17(4), 429–436 (2006)Google Scholar
  9. 9.
    Plaza, M., Herrero, M., Alejandro, A.C., Ib´a˜nez, E.: Innovative natural functional ingredients from microalgae. J. Agri. Food Chem. 57(16), 7159–7170 (2009)CrossRefGoogle Scholar
  10. 10.
    Cha, K.H., Kang, S.W., Kim, C.Y., Um, B.H., Na, Y.R., Pan, C.H.: Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J. Agri. Food Chem. 58(8), 4756–4761 (2010)CrossRefGoogle Scholar
  11. 11.
    Tortora, G.J., Reynolds, S.: (eds.). Principles of Anatomy and Physiology. 7th edn., p. 695. Harper Collins College Publishers, New York (1993)Google Scholar
  12. 12.
    Dineshkumar, R., Kumaravel, R., Sampathkumar, P.: Cultivation of efficient marine microalgae and their biochemical composition and its. antibacterial activity against human pathogens. J. Aqua. Mar. Biol. 5(4), 001–27 (2016)Google Scholar
  13. 13.
    Lananan, F., Jusoh, A., Ali, N., Lam, S.S., Endut, A.: Effect of Conway medium and f/2 medium on the growth of six genera of south China sea marine microalgae. Biores. Technol. 141, 75–82 (2013)CrossRefGoogle Scholar
  14. 14.
    John, D.M., Whitton, B.A., Brook, A.J.: The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge (2003)Google Scholar
  15. 15.
    Folch, J., Lees, M., Stanely, S.: A simple method for the isolation and purification of total lipids from animal G.H. J. Biol. Chem. 226, 497–509 (1957)Google Scholar
  16. 16.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Annal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  17. 17.
    AOAC.: Official Methods of Analysis. (18th edn.). Association of Official Analytical Chemists. Washington. DC (1990)Google Scholar
  18. 18.
    Moovendhan, M., Ramasubburayan, R., Vairamani, S., Shanmugam, A., Palavesam, A., Immanuel, G.: Antibiotic efficacy and characterization of mangrove metabolites against UTI microbes. J. Herb. Spices Med. Plant. 21(2), 129–139 (2015)CrossRefGoogle Scholar
  19. 19.
    Mizushima, Y., Kobayashi, M.: Interaction of anti-inflammatory drugs with serum preoteins, especially with some biologically active proteins. J. Pharma. Pharmacol. 20, 169- 173 (1968)CrossRefGoogle Scholar
  20. 20.
    Oyedepo, O.O., Femurewa, A.J.: Anti-protease and membrane stabilizing activities of extracts of Fagra zanthoxiloides, Olax subscorpioides and Tetrapleura tetraptera. Int. J. Pharmacong. 33, 65–69 (1995)CrossRefGoogle Scholar
  21. 21.
    Azeem, A.K., Dilip, C., Prasanth, S.S., Junise, V., Shahima, H.: Anti-inflammatory activity of the glandular extracts of Thunnus alalunga. Asia Pac. J. Med. 3(10), 412–20 (2010)Google Scholar
  22. 22.
    Shinde, U.A., Kulkarni, K.R., Phadke, A.S., Nair, A.M., Dikshit, V.J., Mungantiwar, V.N., Saraf, M.N.: Mast cell stabilizing and lipoxygenase inhibitory activity of Cedrus deodara (Roxb.) Loud Wood Oil. Ind. J. Exp. Biol. 37(3), 258–261 (1999)Google Scholar
  23. 23.
    Kent, M., Welladsen, M.H., Mangott, A., Li, Y.: Nutritional evaluation of australian microalgae as potential human health supplements. PLOS ONE. 10(2), 1–14 (2015)CrossRefGoogle Scholar
  24. 24.
    Rosario, C.J., Mary Josephine, R.: Mineral profile of edible algae Spirulina platensis. Int. J. Curr. Micro. App. Sci. 4(1), 478–483 (2015)Google Scholar
  25. 25.
    Fabregas, J., Herrero, C.: Marine microalgae as a potential source of minerals in fish diets. Aquacul. 51, 237–243 (1986)CrossRefGoogle Scholar
  26. 26.
    WHO-FAO. Vitamin and mineral requirements in human nutrition. 2nd edn., ISBN 92 4 154612 3, 1–15 pp (2004)Google Scholar
  27. 27.
    Fabregas, J., Herrero, C.: Vitamin content of four marine microalgae: Potential use as source of vitamins in nutrition. J. Indus. Microbiol. 5, 259–264 (1990)CrossRefGoogle Scholar
  28. 28.
    Tang, G., Suter, P.M.: Vitamin A, Nutrition, and Health Values of Algae: Spirulina, Chlorella and Dunaliella. J. Pharm. Nut. Sci. 1, 111–118 (2011)Google Scholar
  29. 29.
    del Campo, A.J., García-González, M., Guerrero, M.G.: Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microb. Biotech. 74, 1163–1174 (2007)CrossRefGoogle Scholar
  30. 30.
    Seyfabadi, J., Ramezanpour, Z., Amini, K.Z.: Protein, fatty acid and pigment content of Chlorella vulgaris under different light regimes. J. Appl. Phycol. 23, 721–726 (2011)CrossRefGoogle Scholar
  31. 31.
    Sharma, R., Singh, P., Sharma, G.: V.K.: Effects of culture conditions on growth and biochemical profile of Chlorella vulgaris. Plant Path. Microbiol. 3(5), 3–5 (2012)Google Scholar
  32. 32.
    Hynstova, V., Sterbova, D., Klejdus, B., Hedbavny, J., Huska, D., Adam, V.: Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using high performance thin layer chromatography. J. Pharma. Biomed. Anal. (2017) CrossRefGoogle Scholar
  33. 33.
    Henriques, M., Silva, A., Rocha, J.: Communicating current research and educational topics and trends in applied microbiology, pp. 586–589. Formataex, Badajoz (2007)Google Scholar
  34. 34.
    Leelaprakash, G., Dass, M.: S.: In vitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Inter. J. Drug Develop. Res. 3(3), 189–196 (2011)Google Scholar
  35. 35.
    Lauritano, C., Andersen, J.H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Hanssen, K.O., Romano, G., Ianora, A.: Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities. Fron. Mar. Sci. 3(68), 1–12 (2016)Google Scholar
  36. 36.
    Radhika, D., Veerabahu, C., Priya, R.: Anti-inflammatory activities of some seaweed collected from the gulf of mannar coast, tuticorin, south India. Int. J.Phar. Biosci. 4(1), 39–44 (2013)Google Scholar
  37. 37.
    Habashy, N.H., Abu Serie, M.M., Attia, W.E., Abdelgaleil, S.A.M.: Chemical characterization, antioxidant and anti-inflammatory properties of Greek Thymus vulgaris extracts and their possible synergism with Egyptian Chlorella vulgaris. J. Func. Foods. 40, 317–328 (2018)CrossRefGoogle Scholar
  38. 38.
    Abu-Serie, M.M., Habashy, N.H., Attia, W.E.: In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris. BMC Comp. Alter. Med. 18, 154–159 (2018)CrossRefGoogle Scholar
  39. 39.
    Moovendhan, M., Seedevi, P., Shanmugam, A., Vairamani, S.: Antibiotic susceptibility and functional group characterization of Pinna nobilis Metabolites against clinical isolates. J. Biol. Active Prod. Nat. 5(1), 52–57 (2015)Google Scholar
  40. 40.
    Kansiz, M., Heraud, P., Wood, B., Burden, F., Beardall, J., McNaughton, D.: Fourier Transform Infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochem. 52, 407–417 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Gopal Prabakaran
    • 1
  • Meivelu Moovendhan
    • 1
    • 2
  • A. Arumugam
    • 1
  • A. Matharasi
    • 1
  • R. Dineshkumar
    • 1
  • Pitchai Sampathkumar
    • 1
    Email author
  1. 1.Centre of Advanced Study in Marine Biology, Faculty of Marine SciencesAnnamalai UniversityParangipettaiIndia
  2. 2.Bioengineering and Drug Design Laboratory, Department of Biotechnology, Bhupat Jyoti Mehta School of BiosciencesIndian Institute of Technology Madras (IIT-M)ChennaiIndia

Personalised recommendations