Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3383–3395 | Cite as

Valorization of Kraft Lignin of Different Molecular Weights as Surfactant Agent for the Oil Industry

  • Nacarid DelgadoEmail author
  • Fredy Ysambertt
  • Gerson Chávez
  • Bélgica Bravo
  • Danny E. García
  • Jorge Santos
Original Paper


After cellulose, lignin is the second most abundant biopolymer in the vegetable world. Since lignin is a natural phenolic polymer, there are a variety of potential products obtainable by its chemical modification, including surfactants. In this regard, lignin is of great interest because represent a byproduct of pulp industries for papermaking; however, this byproduct can be harnessed for obtaining aromatic derivatives of industrial interest. In this work, alkali lignin derivatives of different molecular weights were synthesized from lignin fractions from Pinus caribaea obtained by ultrafiltration. Lignin and lignin-fractions were modified with succinic anhydride (SA), and dodecyl-succinic anhydride (DSA) under microwave heating. The reaction was monitored by Fourier Transform Infrared Spectroscopy. The surface activity of lignin, and lignin-derivatives was evaluated through surface tension measurements, while the stability of suspensions and emulsions was evaluated by the volumetric separation method. The lignin fractions, and the esterified derivatives were obtained in very short reaction times (90–110 s) using a mixture of acetonitrile/ethanol. The lignin-derivatives showed higher surface activity in comparison to the neat lignin. Derivatives prepared from the lower molecular weight fraction by using DSA showed the best emulsifying properties. Lignin-derivatives also showed significant dispersing properties in comparison to a commercial dispersant (lignosulfonate). The best dispersant properties were obtained from the higher molecular weight ultrafiltered lignin fraction esterified with SA.


Lignin Derivatization Succinic anhydride Dodecyl-succinic anhydride Dispersion Emulsion 



The authors thank the Laboratory of Mixing, Separation and Industrial Synthesis (LMSSI) of the Faculty of Engineering of the University of Los Andes (ULA), Merida-Venezuela, especially to professor Dr. Johnny Bullón, for the technical support (tangential UF equipment). In addition, authors like to thanks to “Proyecto Basal PFB-27”, Technological Development Unit (UDT), Concepción University, Chile, and to the Scientific, Humanistic and Technological Development Council (CONDES) of the University of Zulia (LUZ), Maracaibo-Venezuela (project CC-0260-15).


  1. 1.
    Gellerstedt, G., Henriksson, G.: Lignins: major sources, structure and properties. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 201–224. Elsevier Ltd., Oxford (2008)CrossRefGoogle Scholar
  2. 2.
    Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M.: Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3, 29–60 (2004)CrossRefGoogle Scholar
  3. 3.
    Chakar, F.S., Raguaskas, A.J.: Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20, 131–141 (2004)CrossRefGoogle Scholar
  4. 4.
    Lora, J.: Industrial commercial lignins: sources, properties and applications. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 225–241. Elsevier Ltd., Oxford (2008)CrossRefGoogle Scholar
  5. 5.
    Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J.: Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175–1200 (2016)CrossRefGoogle Scholar
  6. 6.
    He, W., Fatehi, P.: Preparation of sulfomethylated softwood kraft lignin as a dispersant for cement admixture. RSC Adv. 5, 47031–47039 (2015)CrossRefGoogle Scholar
  7. 7.
    Konduri, M., Kong, F., Fatehi, P.: Production of carboxymethylated lignin and its application as a dispersant. Eur. Polym. J. 70, 371–383 (2015)CrossRefGoogle Scholar
  8. 8.
    Cerrutti, B.M., de Souza, C.S., Castellan, A., Ruggiero, R., Frollini, E.: Carboxymethyl lignin as stabilizing agent in aqueous ceramic suspensions. Ind. Crop. Prod. 36, 108–115 (2012)CrossRefGoogle Scholar
  9. 9.
    Qin, Y., Yang, D., Qiu, X.: Hydroxypropyl sulfonated lignin as dye dispersant: effect of average molecular weight. ACS Sustain. Chem. Eng. 3, 3239–3244 (2015)CrossRefGoogle Scholar
  10. 10.
    Aso, T., Koda, K., Kubo, S., Yamada, T., Nakajima, I., Uraki, Y.: Preparation of novel lignin-based cement dispersants from isolated lignins. J. Wood Chem. Technol. 33, 286–298 (2013)CrossRefGoogle Scholar
  11. 11.
    Li, S., Willoughby, J., Rojas, O.J.: Oil-in-water emulsions stabilized by carboxymethylated lignins: properties and energy prospects. ChemSusChem 9, 2460–2469 (2016)CrossRefGoogle Scholar
  12. 12.
    Li, S., Ogunkoya, D., Fang, T., Willoughby, J., Rojas, O.J.: Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils. J. Colloid Interf. Sci. 482, 27–38 (2016)CrossRefGoogle Scholar
  13. 13.
    Zhang, Z., Zhang, Y., Lin, Z., Mulyadi, A., Mu, W., Deng, Y.: Butyric anhydride modified lignin and its oil-water interfacial properties. Chem. Eng. Sci. 165, 55–64 (2017)CrossRefGoogle Scholar
  14. 14.
    Neale, G., Hornof, V., Chiwetelu, Ch: Importance of lignosulfonates in petroleum recovery operations. Can. J. Chem. 59, 1938–1943 (1981)CrossRefGoogle Scholar
  15. 15.
    Nelson, R.C.: Application of surfactants in the petroleum industry. J. Am. Oil Chem. Soc. 59, 823–826 (1982)CrossRefGoogle Scholar
  16. 16.
    Wallberg, O., Jönsson, A.-S., Wimmerstedt, R.: Fractionation and concentration of kraft black liquor lignin with ultrafiltration. Desalination 154, 187–199 (2003)CrossRefGoogle Scholar
  17. 17.
    Rojas, O.J., Song, J., Argyropoulos, D.S., Bullón, J.: Lignin separation from kraft black liquors by tangencial ultrafiltration. La Chimica e I’Industria 88, 88–95 (2006)Google Scholar
  18. 18.
    Jönsson, A.-S., Nordin, A.-K., Wallberg, O.: Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chem. Eng. Res. Des. 86, 1270–1280 (2008)CrossRefGoogle Scholar
  19. 19.
    Toledano, A., García, A., Mondragon, I., Labidi, J.: Lignin separation and fractionation by ultrafiltration. Sep. Purif. Technol. 71, 38–43 (2010)CrossRefGoogle Scholar
  20. 20.
    Hazwan Hussin, M., Rahim, A.A., Mohamad Ibrahim, M.N., Perrin, D., Brosse, N.: Enhanced properties of oil palm fronds (OPF) lignin fractions produced via tangential ultrafiltration technique. Ind. Crops Prod. 66, 1–10 (2015)CrossRefGoogle Scholar
  21. 21.
    Delgado, N., Ysambertt, F., Chávez, G., Bravo, B., Márquez, N., Bullón, J.: Microwave assisted synthesis of acylated lignin derivatives of different molar mass with possible surface activity. Avances en Ciencias e Ingeniería 3, 19–31 (2012)Google Scholar
  22. 22.
    Delgado, N., Ysambertt, F., Bravo, B., Chávez, G., Márquez, N.: Esterificación asistida por microondas de lignina de pino con anhídridos alquilsuccínicos. Revista Iberoamericana de Polímeros. 16, 28–42 (2015)Google Scholar
  23. 23.
    Gordobil, O., Egüés, I., Labidi, J.: Modification of Eucaliptus and Spruce organosolv lignins with fatty acids to use as filler in PLA. React. Funct. Polym. 104, 45–52 (2016)CrossRefGoogle Scholar
  24. 24.
    Botaro, V.R., Da Silva Curvelo, A.A.: Monodisperse lignin fractions as standards in size-exclusion analysis. Comparison with polystyrene standards. J. Chromatogr. A 1216, 3802–3806 (2009)CrossRefGoogle Scholar
  25. 25.
    Matsushita, Y., Yasuda, S.: Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresour. Technol. 96, 465–470 (2005)CrossRefGoogle Scholar
  26. 26.
    Matsushita, Y., Imai, M., Iwatsuki, A., Fukushima, K.: The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials. Bioresour. Technol. 99, 3024–3028 (2008)CrossRefGoogle Scholar
  27. 27.
    Matsushita, Y., Inomata, T., Hasegawa, T., Fukushima, K.: Solubilization and functionalization of sulfuric acid lignin generated during bioethanol production from woody biomass. Bioresour. Technol. 100, 1024–1026 (2009)CrossRefGoogle Scholar
  28. 28.
    Homma, H., Kubo, S., Yamada, T., Koda, K., Matsushita, Y., Uraki, Y.: Conversion of technical lignins to amphiphilic derivatives with high surface activity. J. Wood Chem. Technol. 30, 164–174 (2010)CrossRefGoogle Scholar
  29. 29.
    García, D.E.: Pinus pinaster (Ait.) Bark Tannin and Its Hydroxypropyl Derivatives as Building-blocks for Bio-material Design. PhD Thesis. Freiburg University, Freiburg, Germany, p. 215 (2014)Google Scholar
  30. 30.
    Glasser, W.G., Davé, V., Frazier, C.E.: Molecular weight distribution of (semi-) commercial lignin derivatives. J. Wood Chem. Technol. 13, 545–559 (1993)CrossRefGoogle Scholar
  31. 31.
    García, D.E., Glasser, W.G., Pizzi, T.A., Osorio-Madrazo, A., Laborie, M.-P.: Synthesis and physicochemical properties of hydroxypropyl tannins from maritime pine bark (Pinus pinaster Ait.). Holzforschung 68, 411–418 (2014)CrossRefGoogle Scholar
  32. 32.
    Lisperguer, J., Perz, P., Urizar, S.: Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J. Chil. Chem. Soc. 54, 460–463 (2010)Google Scholar
  33. 33.
    Rana, R., Langenfeld-Heyser, R., Finkeldey, R., Polle, A.: FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci. Technol. 44, 225–242 (2010)CrossRefGoogle Scholar
  34. 34.
    Toledano, A., Erdocia, X., Serrano, L., Labidi, J.: Influence of extraction treatment on Olive tree (Olea europaea) pruning lignin structure. Environ. Prog. Sustain. 32, 1187–1194 (2013)CrossRefGoogle Scholar
  35. 35.
    Abdelaziz, O.Y., Hulteberg, C.P.: Physicochemical characterisation of technical lignins for their potential valorization. Waste Biomass Valor. 8, 859–869 (2017)CrossRefGoogle Scholar
  36. 36.
    Boeriu, C.G., Bravo, D., Gosselink, R.J.A., van Dam, J.E.G.: Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 20, 205–218 (2004)CrossRefGoogle Scholar
  37. 37.
    Xiao, B., Sun, X.F., Sun, R.: The chemical modification of lignins with succinic anhydride in aqueous systems. Polym. Degrad. Stabil. 71, 223–231 (2001)CrossRefGoogle Scholar
  38. 38.
    Thielemans, W., Wool, R.P.: Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling. Biomacromolecules 6, 1895–1905 (2005)CrossRefGoogle Scholar
  39. 39.
    Liu, C.F., Sun, R.C., Qin, M.H., Zhang, A.P., Ren, J.L., Ye, J., Luo, W., Cao, Z.N.: Succinoylation of sugarcane bagasse under ultrasound irradiation. Bioresour. Technol. 99, 1465–1473 (2008)CrossRefGoogle Scholar
  40. 40.
    Zhou, M., Pan, B., Yang, D., Lou, H., Qiu, X.: Rheological behavior investigation of concentrated coal-water suspension. J. Disper. Sci. Technol. 31, 838–843 (2010)CrossRefGoogle Scholar
  41. 41.
    Yang, D., Qiu, X., Zhou, M., Lou, H.: Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Convers. Manag. 48, 2433–2438 (2007)CrossRefGoogle Scholar
  42. 42.
    Zhou, M., Qiu, X., Yang, D., Lou, H.: Properties of different molecular weight sodium lignosulfonate fractions as dispersant of coal-water slurry. J. Disper. Sci. Technol. 27, 851–856 (2006)CrossRefGoogle Scholar
  43. 43.
    Zhou, M., Qiu, X., Yang, D., Lou, H., Ouyang, X.: High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin. Fuel Process. Technol. 88, 375–382 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Área de BioproductosUnidad de Desarrollo Tecnológico (UDT), Universidad de Concepción (UdeC)CoronelChile
  2. 2.Laboratorio de Petroquímica y Surfactantes (LPS), Departamento de Química, Facultad Experimental de CienciasUniversidad del ZuliaMaracaiboVenezuela
  3. 3.Laboratorio de Instrumentación Analítica (LIA), Departamento de Química, Facultad Experimental de CienciasUniversidad del ZuliaMaracaiboVenezuela
  4. 4.Laboratorio de Fitoquímica, Departamento de Química Ambiental, Facultad de CienciasUniversidad Católica de la Santísima Concepción (UCSC)ConcepciónChile
  5. 5.Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS)UCSCConcepciónChile
  6. 6.Investigador Asociado Área de BioproductosUDT, UdeCConcepciónChile

Personalised recommendations