Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3321–3330 | Cite as

Analysis of the Continuous Bioconversion of Glycerol by Promotion of Highly Glycerol-Resistant Glycerol-Degrading Bacteria

  • Kensuke Kurahashi
  • Keisuke Hisada
  • Mai Kashiwagi
  • Shizue Yoshihara
  • Toshiyuki Nomura
  • Hayato TokumotoEmail author
Original Paper



We identified component microorganisms in a fed-batch operation by modulating the mixed flora via addition of glucose to achieve continuous bioconversion of hardly degradable glycerol.


To study the microbial community structure of the flora accumulated by the addition of glucose, 16S ribosomal RNA (rRNA) gene was sequenced using PCR with denaturing gradient gel electrophoresis (DGGE).


Burkholderia vietnamiensis, Burkholderia phenoliruptrix, Staphylococcus aureus, Bacillus licheniformis, and Clostridium pasteurianum were identified as component strains. Using the colony containing C. pasteurianum, the hydrogen yield was 0.34 mol/(mol glycerol). C. pasteurianum, B. licheniformis, B. vietnamiensis, and B. phenoliruptrix utilized both glycerol and glucose as substrates and could tolerate high glycerol loads. In early fermentation, predominance of the hydrogen-producing C. pasteurianum resulted in the conversion of glycerol into hydrogen and 1,3-propanediol. In contrast, in late fermentation, the auxiliary degradation of B. licheniformis and the two Burkholderia strains enabled continuous conversion of the glycerol to valuable compounds.


Glucose addition results in a stable flora by optimizing the ratio of highly glycerol-resistant glycerol-degrading bacteria, thereby establishing an anaerobic digestion process that allows continuous conversion of high loads of glycerol.


Crude glycerol Fermentation promoter PCR-DGGE Hydrogen Fed-batch culture 



This work was supported by JSPS KAKENHI Grant No. JP19656243 and JP21241022 from the Japan Society for the Promotion of Science, an Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) from the Japan Science and Technology Agency (JST), and a research grant from the Japan Soap and Detergent Association (JSDA). The sponsors had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rivero, M., Solera, R., Perez, M.: Anaerobic mesophilic co-digestion of sewage sludge with glycerol: enhanced biohydrogen production. Int. J. Hydrog. Energy 39, 2481–2488 (2014)CrossRefGoogle Scholar
  2. 2.
    Yazdani, S.S., Gonzalez, R.: Anaerobic fermentation of glycerol: a path to economic viability for the biofuel industry. Curr. Opin. Biotechnol. 18, 213–219 (2007)CrossRefGoogle Scholar
  3. 3.
    Cooksaw, T., O-Thong, S., Prasertsan, P.: Fermentation production of hydrogen and soluble metabolites from crude glycerol of biodiesel plant by newly isolated thermotolerant Klebsiella pneumonia TR17. Int. J. Hydrog. Energy 37, 13314–13322 (2012)CrossRefGoogle Scholar
  4. 4.
    Vivek, N., Pandey, A., Binod, P.: Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresour. Technol. 213, 222–230 (2016)CrossRefGoogle Scholar
  5. 5.
    Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C.: From glycerol to value-added products. Angew. Chem. Int. Ed. 46, 4434–4440 (2007)CrossRefGoogle Scholar
  6. 6.
    Nakashimada, Y., Rachman, M.A., Kakizono, T., Nishio, N.: H2 production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int. J. Hydrog. Energy 27, 1399–1405 (2002)CrossRefGoogle Scholar
  7. 7.
    Rachman, M.A., Furutani, Y., Nakashimada, Y., Kakizono, T., Nishio, N.: Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J. Ferment. Bioeng. 83, 358–363 (1997)CrossRefGoogle Scholar
  8. 8.
    Ito, T., Nakashimada, Y., Senba, K., Matsui, T., Nishio, N.: Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100, 260–265 (2005)CrossRefGoogle Scholar
  9. 9.
    Sakai, S., Yagishita, T.: Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol. Bioeng. 98, 340–348 (2007)CrossRefGoogle Scholar
  10. 10.
    Chatzifragkou, A., Dietz, D., Komaitis, M., Zeng, A.P., Papanikolaou, S.: Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol. Bioeng. 107, 76–84 (2010)CrossRefGoogle Scholar
  11. 11.
    Gonzales-Pajuelo, M., Meynial-Salles, I., Mendes, F., Andrade, J.C., Vasconcelos, I., Soucaille, P.: Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7, 329–336 (2005)CrossRefGoogle Scholar
  12. 12.
    Khanna, S., Shukla, A.K., Goyal, A., Moholkar, V.S.: Alcoholic biofuels production from biodiesel derived glycerol by Clostridium pasteurianum whole cells immobilized on silica. Waste Biomass Valor. 5, 789–798 (2014)CrossRefGoogle Scholar
  13. 13.
    Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A.: The IWA anaerobic digestion model No 1 (ADM1). Wat. Sci. Tech. 45, 65–73 (2002)CrossRefGoogle Scholar
  14. 14.
    Speece, R.E.: Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Nashville (1996)Google Scholar
  15. 15.
    Tokumoto, H., Sakuda, N., Nagao, T., Yoshihara, A., Nomura, T.: Immobilization and growth of aceticlastic methanogen on bamboo charcoal. J. Environ. Biotechnol. 12, 155–161 (2012)Google Scholar
  16. 16.
    Kurahashi, K., Kimura, C., Fujimoto, Y., Tokumoto, H.: Value-adding conversion and volume reduction of sewage sludge by anaerobic co-digestion with crude glycerol. Bioresour. Technol. 232, 119–125 (2017)CrossRefGoogle Scholar
  17. 17.
    Tokumoto, H., Kashiwagi, M.: Change in dominant fermentation type during anaerobic digestion of high-loading glycerol with slight glucose content. Bioresour. Technol. 126, 13–17 (2012)CrossRefGoogle Scholar
  18. 18.
    Kashiwagi, M., Kurahashi, K., Nomura, T., Tokumoto, H.: Anaerobic digestion and resource process of glycerol by fed-batch culture. J. Environ. Conserv. Eng. 42, 94–100 (2013)CrossRefGoogle Scholar
  19. 19.
    Tokumoto, H., Tanaka, M.: Novel anaerobic digestion included by bacterial components for value-added byproducts from high-loading glycerol. Bioresour. Technol. 107, 327–332 (2012)CrossRefGoogle Scholar
  20. 20.
    Muyzer, G., de Waal, E.C., Uitterlinden, A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified gene coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993)Google Scholar
  21. 21.
    Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463–5467: (1977)CrossRefGoogle Scholar
  22. 22.
    Birrer, G.A., Cromwick, A.M., Gross, R.A.: c-Poly (glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int. J. Biol. Macromol. 16, 265–275 (1994)CrossRefGoogle Scholar
  23. 23.
    Ko, Y.H., Gross, R.A.: Effects of glucose and glycerol on γ-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol. Bioeng. 57, 430–437 (1998)CrossRefGoogle Scholar
  24. 24.
    Dabrock, B., Bahl, H., Gottschalk, G.: Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol. 58, 1233–1239 (1992)Google Scholar
  25. 25.
    Lo, Y.C., Chen, X.J., Huang, C.Y., Yuan, Y.J., Chang, J.S.: Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. Int. J. Hydrog. Energy 38, 15815–15822 (2013)CrossRefGoogle Scholar
  26. 26.
    Zhu, C., Nomura, C.T., Perrotta, J.A., Stipanovic, A.J., Nakas, J.P.: Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol. Prog. 26, 424–430 (2010)Google Scholar
  27. 27.
    Rodríguez-Contreras, A., Koller, M., Dias, M.M.S., Calafell-Monfort, M., Braunegg, G., Marqués-Calvo, M.S.: Influence of glycerol on poly(3-hydroxybutyrate) production by Cupriavidus necator and Burkholderia sacchari. Biochem. Eng. J. 94, 50–57 (2015)CrossRefGoogle Scholar
  28. 28.
    Zinder, S.: Conversation of acetic acid to methane by thermophies. FEMS Microbiol. Rev. 75, 125–138 (1990)CrossRefGoogle Scholar
  29. 29.
    Westerman, P., Ahring, B.K., Mah, R.A.: Threshold acetate concentration for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55, 514–515 (1989)Google Scholar
  30. 30.
    Henijnen, J.J.: Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. Wiley New York (1999)Google Scholar
  31. 31.
    Fountoulakis, M.S., Petousi, I., Manios, T.: Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manage 30, 1849–1853 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Kensuke Kurahashi
    • 1
  • Keisuke Hisada
    • 2
  • Mai Kashiwagi
    • 2
  • Shizue Yoshihara
    • 3
  • Toshiyuki Nomura
    • 2
  • Hayato Tokumoto
    • 3
    Email author
  1. 1.Osaka Prefecture University College of TechnologyNeyagawaJapan
  2. 2.Department of Chemical EngineeringOsaka Prefecture UniversitySakaiJapan
  3. 3.Department of Biological SciencesOsaka Prefecture UniversitySakaiJapan

Personalised recommendations