Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3493–3513 | Cite as

Effect of the Addition of Aluminum Recycling Waste on the Pozzolanic Activity of Sugarcane Bagasse Ash and Zeolite

  • Inara Guglielmetti Braz
  • Mirian Chieko ShinzatoEmail author
  • Tarcísio José Montanheiro
  • Thelma Miranda de Almeida
  • Flávio Machado de Souza Carvalho
Original Paper

Abstract

The pozzolanic activity of aluminum recycling waste (AW) was evaluated along with sugarcane bagasse ash (BA) and zeolite (ZE) to give a more sustainable use. These materials were characterized and submitted to the pozzolanic activity test by a modified Chapelle test and the compressive strength of mortars prepared with limestone Portland cement (LPC). The final solids were characterized again to determine the hydrated products. The main reactive chemical components of AW are Al2O3 and MgO, which are in the form of hydroxides, such as nordstrandite (Al(OH)3), meixnerite ([Mg5Al3(OH)16][(OH)3·(H2O)4]), brucite (Mg(OH)2) and magnesium chloride hydroxide hydrate (Mg3(OH)5Cl·4H2O). All of the studied materials were classified as pozzolans by the modified Chapelle test, and the main hydrated products formed in the AW sample were katoite, ettringite, talc and amesite. When mixed with BA and ZE, C-A-S-H and C-S-H phases were also formed. The C-S-H phases and portlandite were detected only in the solids of the modified Chapelle test of BA and ZE. Calcite was present in all samples, indicating that part of the Ca(OH)2 was consumed by the carbonation process. The compressive strength test of mortars revealed that only ZE is a pozzolan. In mortars containing AW the production of ettringite and calcium carboaluminate increased due to the reactions of aluminum, respectively, with gypsum and calcite present in LPC. In addition to portlandite, C-S-H was formed only in the BA and ZE mortars. Although hydration reactions were not sufficient to form C-S-H in AW mortar, reactive aluminum favors the formation of primary ettringite.

Keywords

Aluminum hydroxide Pozzolanic activity Hydrated products Carbonation 

Notes

Acknowledgements

We thank FAPESP (2011/13168-1) for financial support and CAPES for the scholarship for MSc Inara G. Braz. Special thanks to Mrs. Elizabeth Almeida of Reciclagem de Metais Fernão Dias Ltda., NIPE (UNIFESP-Campus Diadema), Celta Brasil and Indústria Santa Rosa. We also thank the anonymous referees for their valuable comments.

References

  1. 1.
    Associação Brasileira do Alumínio: Relatório de sustentabilidade - reciclagem. Associação Brasileira do Alumínio, São Paulo (2012)Google Scholar
  2. 2.
    International Aluminum Institute: Global Aluminium Recycling: A Cornerstone of Sustainable Development. International Aluminum Institute, London (2013)Google Scholar
  3. 3.
    Associação Brasileira do Alumínio: Anuário Estatístico 2015. Associação Brasileira do Alumínio, São Paulo (2015)Google Scholar
  4. 4.
    Shinzato, M.C., Hypolito, R.: Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste Manag. (2005).  https://doi.org/10.1016/j.wasman.2004.08.005 CrossRefGoogle Scholar
  5. 5.
    Shinzato, M.C., Hypolito, R.: Effect of disposal of aluminum recycling waste in soil and water bodies. Environ. Earth Sci. (2016).  https://doi.org/10.1007/s12665-016-5438-3 CrossRefGoogle Scholar
  6. 6.
    Gonzalo-Delgado, L., López-Delgado, A., López, F.A., Alguacil, F.J., López-Andrés, S.: Recycling of hazardous waste from tertiary aluminium industry in a value-added material. Waste Manag. Res. 29, 127–134 (2011).  https://doi.org/10.1177/0734242X10378330 CrossRefGoogle Scholar
  7. 7.
    El-Katatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Recovery of high surface area alumina from aluminum dross tailings. J. Chem. Technol. Biotechnol. 75, 394 (2000)CrossRefGoogle Scholar
  8. 8.
    El-Katatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Surface composition, charge and texture of active alumina powders recovered from aluminum dross tailings chemical waste. Powder Technol. 132, 137–144 (2003).  https://doi.org/10.1016/S0032-5910(03)00047-0 CrossRefGoogle Scholar
  9. 9.
    Associação Brasileira de Normas Técnicas: NBR 12653: Materiais pozolânicos - especificação. ABNT, Rio de Janeiro (2012)Google Scholar
  10. 10.
    Kontori, E., Perraki, T., Tsivilis, S., Kakali, G.: Zeolite blended cements: evaluation of their hydration rate by means of thermal analysis. J. Therm. Anal. Calorim. 96, 993–998 (2009).  https://doi.org/10.1007/s10973-009-0056-x CrossRefGoogle Scholar
  11. 11.
    Garbev, K., Black, L., Beuchle, G., Stemmermann, P.: Inorganic polymers in cement based materials. Wasser Geotechnol. 1, 19–30 (2002)Google Scholar
  12. 12.
    Mertens, G., Snellings, R., Van Balen, K., Bicer-Simsir, B., Verlooy, P., Elsen, J.: Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem. Concr. Res. 39, 233–240 (2009).  https://doi.org/10.1016/j.cemconres.2008.11.008 CrossRefGoogle Scholar
  13. 13.
    Chusilp, N., Jaturapitakkul, C., Kiattikomol, K.: Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 23, 3352–3358 (2009).  https://doi.org/10.1016/j.conbuildmat.2009.06.030 CrossRefGoogle Scholar
  14. 14.
    Cordeiro, G.C., Toledo Filho, R.D., Tavares, L.M., Fairbairn, E.D.M.R.: Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115 (2009).  https://doi.org/10.1016/j.cemconres.2008.11.005 CrossRefGoogle Scholar
  15. 15.
    Fairbairn, E.M.R., Americano, B.B., Cordeiro, G.C., Paula, T.P., Toledo Filho, R.D., Silvoso, M.M.: Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manage. 91, 1864–1871 (2010).  https://doi.org/10.1016/j.jenvman.2010.04.008 CrossRefGoogle Scholar
  16. 16.
    Frías, M., Villar, E., Savastano, H.: Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496 (2011).  https://doi.org/10.1016/j.cemconcomp.2011.02.003 CrossRefGoogle Scholar
  17. 17.
    Rukzon, S., Chindaprasirt, P.: Utilization of bagasse ash in high-strength concrete. Mater. Des. 34, 45–50 (2012).  https://doi.org/10.1016/j.matdes.2011.07.045 CrossRefGoogle Scholar
  18. 18.
    FIESP/CIESP: Ampliação da oferta de energia através da biomassa do Bagaço da cana-de- açúcar. FIESP/CIESP, São Paulo (2001)Google Scholar
  19. 19.
    Companhia Nacional de Abastecimento: Acompanhamento da safra brasileira de cana-de-açúcar: safra 2017/18 - primeiro levantamento. CONAB, Brasília (2017)Google Scholar
  20. 20.
    Perraki, T., Kakali, G., Kontoleon, F.: The effect of natural zeolites on the early hydration of Portland cement. Microporous Mesoporous Mater. 61, 205–212 (2003).  https://doi.org/10.1016/S1387-1811(03)00369-X CrossRefGoogle Scholar
  21. 21.
    Zhang, Z., Guo, J., Liang, C.: Contribution of zeolite to the hydration of cement. In: Mumpton, F.A. (ed.) Proceedings of the 4th International Conference on Occurrence, Properties, Utilization of Natural Zeolites. pp. 221–223., New York (1995)Google Scholar
  22. 22.
    Caputo, D., Liguori, B., Colella, C.: Some advances in understanding the pozzolanic activity of zeolites: the effect of zeolite structure. Cem. Concr. Compos. 30, 455–462 (2008).  https://doi.org/10.1016/j.cemconcomp.2007.08.004 CrossRefGoogle Scholar
  23. 23.
    Vigil de La Villa, R., Fernández, R., Rodríguez, O., García, R., Villar-Cociña, E., Frías, M.: Evolution of the pozzolanic activity of a thermally treated zeolite. J. Mater. Sci. 48, 3213–3224 (2013).  https://doi.org/10.1007/s10853-012-7101-z CrossRefGoogle Scholar
  24. 24.
    Lothenbach, B., Scrivener, K., Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. 41, 1244–1256 (2011).  https://doi.org/10.1016/j.cemconres.2010.12.001 CrossRefGoogle Scholar
  25. 25.
    Siddique, R., Khan, M.I.: Supplementary Cementing Materials. Springer, Berlin (2011)CrossRefGoogle Scholar
  26. 26.
    Thomas, M.: The effect of supplementary cementing materials on alkali-silica reaction: a review. Cem. Concr. Res. 41, 1224–1231 (2011).  https://doi.org/10.1016/j.cemconres.2010.11.003 CrossRefGoogle Scholar
  27. 27.
    Brykov, A., Anisimova, A.: Efficacy of aluminum hydroxides as inhibitors of alkali-silica reactions. Mater. Sci. Appl. 4, 1–6 (2013)Google Scholar
  28. 28.
    Barger, G.S., Bayles, J., Blair, B., Brown, D., Chen, H., Conway, T., Hawkins, P.: Ettringite Formation and the Performance of Concrete. Portland Cement Association R&D, New York, pp. 1–16 (2001)Google Scholar
  29. 29.
    Brykov, A.S., Vasil’ev, A.S., Mokeev, M.V.: Hydration of Portland cement in the presence of high activity aluminum hydroxides. Russ. J. Appl. Chem. 85, 1793–1799 (2012).  https://doi.org/10.1134/S1070427212120014 CrossRefGoogle Scholar
  30. 30.
    Insituto de Pesquisas Tecnológicas do Estado de São Paulo: Atividade pozolânica: método de Chapelle modificado. IPT, São Paulo (1997)Google Scholar
  31. 31.
    NBR 5752: Associação Brasileria de Cimento Portland: NBR 5752 Materiais Pozolânicos - Determinação da Atividade Pozolânica com Cimento Portland - índice de Atividade Pozolânica com Cimento - Método de Ensaio. ABNT, Rio de Janeiro (2012)Google Scholar
  32. 32.
    Técnicas, A.B.D.N.: Guia básico de utilização do Cimento Portland. ABNT, Rio de Janeiro (2002)Google Scholar
  33. 33.
    Técnicas, A.B.D.N.: NBR 7215: Cimento Portland - determinação da resistência à compresão. ABNT, Rio de Janeiro (1997)Google Scholar
  34. 34.
    Taylor, H.F.W.: Cement Chemistry. Thomas Telford, London (1997)CrossRefGoogle Scholar
  35. 35.
    Du, C.: A review of magnesium oxide in concrete. Concr. Int. 27:45–50 (2005)Google Scholar
  36. 36.
    Zhang, T., Cheeseman, C.R., Vandeperre, L.J.: Development of low pH cement systems forming magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 41, 439–442 (2011).  https://doi.org/10.1016/j.cemconres.2011.01.016 CrossRefGoogle Scholar
  37. 37.
    David, E., Kopac, J.: Hydrolysis of aluminum dross material to achieve zero hazardous waste. J. Hazard. Mater. 209, 501–509 (2012).  https://doi.org/10.1016/j.jhazmat.2012.01.064 CrossRefGoogle Scholar
  38. 38.
    Tsakiridis, P.E.: Aluminium salt slag characterization and utilization—a review. J. Hazard. Mater. (2012).  https://doi.org/10.1016/j.jhazmat.2012.03.052 CrossRefGoogle Scholar
  39. 39.
    Balan, E., Blanchard, M., Hochepied, J.F., Lazzeri, M.: Surface modes in the infrared spectrum of hydrous minerals: the OH stretching modes of bayerite. Phys. Chem. Miner. 35, 279–285 (2008).  https://doi.org/10.1007/s00269-008-0221-y CrossRefGoogle Scholar
  40. 40.
    Bosmans, H.J.: Unit cell and crystal structure of nordstrandite, Al(OH)3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 26, 649–652 (1970).  https://doi.org/10.1107/S0567740870002911 CrossRefGoogle Scholar
  41. 41.
    Schoen, R., Roberson, C.E.: Structures of aluminum hydroxide and geochemical implications. Am. Mineral. 55, 43–77 (1970)Google Scholar
  42. 42.
    Barnhisel, R.I., Rich, C.I.: Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces. Soil Sci. Soc. Am. J. 29, 531 (1965).  https://doi.org/10.2136/sssaj1965.03615995002900050018x CrossRefGoogle Scholar
  43. 43.
    Violante, P., Violante, A., Tait, J.M.: Morphology of nordstrandite. Clays Clay Miner. 30, 431–437 (1982).  https://doi.org/10.1346/CCMN.1982.0300605 CrossRefGoogle Scholar
  44. 44.
    Prodromou, K.P., Pavlatou-Ve, A.S.: Formation of aluminum hydroxides as influenced by aluminum salts and bases. Clays Clay Miner. 43, 111–115 (1995).  https://doi.org/10.1346/CCMN.1995.0430113 CrossRefGoogle Scholar
  45. 45.
    Cordeiro, G.C., Toledo Filho, R.D., Fairbairn, E.M.R.: Caracterização de cinzado bagaço de cana-de-açúcar para emprego como pozolana em materiais cimentícios. Quim. Nova. 32, 82–86 (2009).  https://doi.org/10.1590/S0100-40422010000800018 CrossRefGoogle Scholar
  46. 46.
    Martirena Hernández, J., Middendorf, B., Gehrke, M., Budelmann, H.: Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cem. Concr. Res. 28, 1525–1536 (1998).  https://doi.org/10.1016/S0008-8846(98)00130-6 CrossRefGoogle Scholar
  47. 47.
    Mindat.org: Quartz-beta. https://www.mindat.org/min-7395.html.
  48. 48.
    Wu, L.F., Shinzato, M.C., Andrade, S., Franchi, J.G., Andrade, VdaS.: Efeito da adição de zeólita e vermiculita na lixiviação de potássio do solo. Rev. do Inst. Geol. 34, 57–67 (2013).  https://doi.org/10.5935/0100-929X.20130004 CrossRefGoogle Scholar
  49. 49.
    Baldo, J.B., Santos, W.N.: Phase transitions and their effects on the thermal diffusivity behavior of some SiO2 polymorphs. Ceramica. 48, 172–177 (2002).  https://doi.org/10.1590/S0366-69132002000300011 CrossRefGoogle Scholar
  50. 50.
    Frías, M.: The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature. Adv. Cem. Res. 18, 1–6 (2006).  https://doi.org/10.1680/adcr.2006.18.1.1 CrossRefGoogle Scholar
  51. 51.
    Zhang, T., Vandeperre, L.J., Cheeseman, C.R.: Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 65, 8–14 (2014).  https://doi.org/10.1016/j.cemconres.2014.07.001 CrossRefGoogle Scholar
  52. 52.
    Kyritsis, K., Meller, N., Hall, C.: Chemistry and morphology of hydrogarnets formed in cement-based CASH hydroceramics cured at 200 °C to 350 °C. J. Am. Ceram. Soc. 92, 1105–1111 (2009).  https://doi.org/10.1111/j.1551-2916.2009.02958.x CrossRefGoogle Scholar
  53. 53.
    Matschei, T., Lothenbach, B., Glasser, F.P.: Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O. Cem. Concr. Res. 37, 1379–1410 (2007).  https://doi.org/10.1016/j.cemconres.2007.06.002 CrossRefGoogle Scholar
  54. 54.
    Ramachandran, V.S.: Thermal analyses of cement components hydrated in the presence of calcium carbonate. Thermochim. Acta. 127, 385–394 (1988).  https://doi.org/10.1016/0040-6031(88)87515-4 CrossRefGoogle Scholar
  55. 55.
    Kakali, G., Tsivilis, S., Aggeli, E., Bati, M.: Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res 30, 2–6 (2000)CrossRefGoogle Scholar
  56. 56.
    Nied, D., Enemark-Rasmussen, K., L’Hopital, E., Skibsted, J., Lothenbach, B.: Properties of magnesium silicate hydrates (M-S-H). Cem. Concr. Res. 79, 323–332 (2016).  https://doi.org/10.1016/j.cemconres.2015.10.003 CrossRefGoogle Scholar
  57. 57.
    Fernández-Carrasco, L., Vázquez, E.: Reactions of fly ash with calcium aluminate cement and calcium sulphate. Fuel. 88, 1533–1538 (2009).  https://doi.org/10.1016/j.fuel.2009.02.018 CrossRefGoogle Scholar
  58. 58.
    Wamba, A.G.N., Lima, E.C., Ndi, S.K., Thue, P.S., Kayem, J.G., Rodembusch, F.S., dos Reis, G.S., de Alencar, W.S.: Synthesis of grafted natural pozzolan with 3-aminopropyltriethoxysilane: preparation, characterization, and application for removal of brilliant green 1 and reactive black 5 from aqueous solutions. Environ. Sci. Pollut. Res. 24, 21807–21820 (2017).  https://doi.org/10.1007/s11356-017-9825-4 CrossRefGoogle Scholar
  59. 59.
    Biricik, H., Sarier, N.: Comparative study of the characteristics of nano silica-, silica fume- and fly ash-incorporated cement mortars. Mater. Res. 17, 570–582 (2014).  https://doi.org/10.1590/S1516-14392014005000054 CrossRefGoogle Scholar
  60. 60.
    Fernández-Carrasco, L., Torrens-Martín, D., Morales, L.M., Martínez-Ramírez, S.: Infrared spectroscopy in the analysis of building and construction materials. Infrared Spectrosc. – Mater. Sci. Eng. Technol. (2012).  https://doi.org/10.5772/36186 CrossRefGoogle Scholar
  61. 61.
    Allahverdi, a, Kani, E., Yazdanipour, M.: Effects of blast furnace slag on natural pozzolan- based geopolymer cement. Ceram Silickáty. 55, 68–78 (2011)Google Scholar
  62. 62.
    Frost, R.L., Xi, Y.: Whelanite Ca5Cu2(OH)2CO3, Si6O17·4H2O—a vibrational spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 319–323 (2012).  https://doi.org/10.1016/j.saa.2012.02.003 CrossRefGoogle Scholar
  63. 63.
    Wang, L., He, Z., Cai, X.: Characterization of pozzolanic reaction and its effect on the C-S-H gel in fly ash-cement paste. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26, 319–324 (2011).  https://doi.org/10.1007/s11595-011-0222-4 CrossRefGoogle Scholar
  64. 64.
    Massazza, F.: Pozzolana and pozzolanic cements. In: Hewlett, P. (ed.) Lea’s Chemistry of Cement and Concrete, pp. 471–630. Arnold, London (1998)CrossRefGoogle Scholar
  65. 65.
    Uzal, B., Turanli, L., Yücel, H., Göncüoǧlu, M.C., Çulfaz, A.: Pozzolanic activity of clinoptilolite: a comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan. Cem. Concr. Res. 40, 398–404 (2010).  https://doi.org/10.1016/j.cemconres.2009.10.016 CrossRefGoogle Scholar
  66. 66.
    Ahmadi, B., Shekarchi, M.: Use of natural zeolite as a supplementary cementitious material. Cem. Concr. Compos. 32, 134–141 (2010).  https://doi.org/10.1016/j.cemconcomp.2009.10.006 CrossRefGoogle Scholar
  67. 67.
    Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M.: An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr. Build. Mater. 35, 1023–1033 (2012).  https://doi.org/10.1016/j.conbuildmat.2012.04.038 CrossRefGoogle Scholar
  68. 68.
    Ipavec, A., Gabrovšek, R., Vuk, T., Kaučič, V., MačEk, J., Meden, A.: Carboaluminate phases formation during the hydration of calcite-containing Portland cement. J. Am. Ceram. Soc. 94, 1238–1242 (2011).  https://doi.org/10.1111/j.1551-2916.2010.04201.x CrossRefGoogle Scholar
  69. 69.
    De Weerdt, K.: Ternary Blended Cements with Fly Ash and Limestone. Part II: Limestone Powder. State of the Art. SINTEF Report, SINTEF Building and Infrastructure/COIN - Concrete Innovation Centre, Trondheim, Norway (2007)Google Scholar
  70. 70.
    Henmi, C., Kusachi, I.: Clinotobermorite, Ca5Si6(O,OH)18·5H2O, a new mineral from Fuka, Okayama Prefecture, Japan. Mineral. Mag. 56, 353–358 (1992)CrossRefGoogle Scholar
  71. 71.
    Fernández, R., Isabel Ruiz, A., Cuevas, J.: Formation of C-A-S-H phases from the interaction between concrete or cement and bentonite. Clay Miner. 51, 223–235 (2016).  https://doi.org/10.1180/claymin.2016.051.2.09 CrossRefGoogle Scholar
  72. 72.
    Collepardi, M.: A state-of-the-art review on delayed ettringite attack on concrete. Cem. Concr. Compos. 25, 401–407 (2003).  https://doi.org/10.1016/S0958-9465(02)00080-X CrossRefGoogle Scholar
  73. 73.
    Sutan, N.M., Yakub, I., Jaafar, M.S., Matori, K.A., Sahari, S.K.: Sustainable nanopozzolan modified cement: characterizations and morphology of calcium silicate hydrate during hydration. J. Nanomater. (2015).  https://doi.org/10.1155/2015/713258 CrossRefGoogle Scholar
  74. 74.
    Girão, A.V., Richardson, I.G., Taylor, R., Brydson, R.M.D.: Composition, morphology and nanostructure of C-S-H in 70% white Portland cement-30% fly ash blends hydrated at 55 °C. Cem. Concr. Res. 40, 1350–1359 (2010).  https://doi.org/10.1016/j.cemconres.2010.03.012 CrossRefGoogle Scholar
  75. 75.
    Grangeon, S., Claret, F., Linard, Y., Chiaberge, C.: X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 69, 465–473 (2013).  https://doi.org/10.1107/S2052519213021155 CrossRefGoogle Scholar
  76. 76.
    Grangeon, S., Fernandez-Martinez, A., Baronnet, A., Marty, N., Poulain, A., Elkaïm, E., Roosz, C., Gaboreau, S., Henocq, P., Claret, F.: Quantitative X-ray pair distribution function analysis of nanocrystalline calcium silicate hydrates: a contribution to the understanding of cement chemistry. J. Appl. Crystallogr. 50, 14–21 (2017).  https://doi.org/10.1107/S1600576716017404 CrossRefGoogle Scholar
  77. 77.
    Martini, F., Borsacchi, S., Geppi, M., Tonelli, M., Ridi, F., Calucci, L.: Monitoring the hydration of MgO-based cement and its mixtures with Portland cement by 1H NMR relaxometry. Microporous Mesoporous Mater. (2016).  https://doi.org/10.1016/j.micromeso.2017.05.031 CrossRefGoogle Scholar
  78. 78.
    Jambor, J.: Influence of 3CaO·Al2O3·CaCO3·nH2O on the structure of cement paste. Proceedings of the 7th International Congress on Chemistry of the Cement. pp. 487–492. Paris (1980)Google Scholar
  79. 79.
    Cussino, L., Negro, A.: Hydratation du ciment alumineux en presence d’agrégar siliceux et calcaire. Proceedings of the 7th International Congress on Chemistry of the Cement. pp. 62–67. Paris (1980)Google Scholar
  80. 80.
    Cizer, Ö, Van Balen, K., Van Gemert, D.: Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Adv. Mater. Res. 133–134, 241–246 (2010).  https://doi.org/10.4028/www.scientific.net/AMR.133-134.241 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciências AmbientaisQuímicas e Farmacêuticas da Universidade Federal de São PauloDiademaBrazil
  2. 2.Instituto Geológico do Estado São PauloSão PauloBrazil
  3. 3.Instituto de Geociências da Universidade de São PauloSão PauloBrazil

Personalised recommendations