Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3525–3534 | Cite as

Applicability of Fly Ash from Fluidized Bed Combustion of Peat, Wood, or Wastes to Concrete

  • Katja OhenojaEmail author
  • Valter Wigren
  • Jan Österbacka
  • Mirja Illikainen
Original Paper


The chemical and physical characteristics of five different fly ashes originating from fluidized bed combustion of peat, wood, or different wastes were investigated to determine whether they fulfilled the requirements for concrete set by the European EN 450-1 standard. Fly ash originating mostly from peat combustion fulfilled all the requirements of the EN 450-1 standard, without any treatments. Some chemical and physical characteristics (i.e., free calcium oxide, sulfate, chloride, and fineness) of the other types of fly ash exceeded the limits in standard, and the sum of the main components (SiO2, Al2O3, and Fe2O3) failed to comply with the standard. However, it should be noted that the requirements of the European standard are more restrictive than similar standards in the US; all applications are not needing standardized concrete, and the potential utility of the studied fly ash materials could be improved by mechanical treatments.

Graphical Abstract


Recycling Mortar Reuse Standard Sustainability Utilization 



This study was supported by the Finnish Funding Agency for Technology and Innovation and the following Finnish companies: Boliden Harjavalta Oy, Ekokem Palvelu Oy, Fortum Power and Heat Oy, Helen Oy, Jyväskylän Energia Oy, Kemira Chemicals Oy, Metsä Board Oyj, Napapiirin Energia ja Vesi Oy, Nordkalk Oy Ab, Paroc Group Oy, SSAB Europe Oy, Stora Enso Oyj, UPM-Kymmene Oyj, and Valmet Technologies Oy. We would like to thank Dr. Mika Körkkö for experimental design and interpretation of the results and Mr. Jarno Karvonen, Mr. Jani Österlund, and MSc. Jouni Rissanen for their contributions to the laboratory work.


  1. 1.
    European Commission: Communication from the commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. A Policy Framework for Climate and Energy in the Period from 2020 to 2030. European Commission, Brussels (2014)Google Scholar
  2. 2.
    Patel, A., Basu, P., Acharya, B.: An investigation into partial capture of CO2 released from a large coal/petcoke fired circulating fluidized bed boiler with limestone injection using its fly and bottom ash. J. Environ. Chem. Eng. 5, 667–678 (2017). CrossRefGoogle Scholar
  3. 3.
    Dash, M.K., Patro, S.K., Rath, A.K.: Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete—a review. Int. J. Sustain. Built Environ. 5, 484–516 (2016). CrossRefGoogle Scholar
  4. 4.
    Gartner, E.: Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 34, 1489–1498 (2004). CrossRefGoogle Scholar
  5. 5.
    Liew, K.M., Sojobi, A.O., Zhang, L.W.: Green concrete: prospects and challenges. Constr. Build. Mater. 156, 1063–1095 (2017). CrossRefGoogle Scholar
  6. 6.
    Rashad, A.M.: A brief on high-volume class F fly ash as cement replacement—a guide for civil engineer. Int. J. Sustain. Built Environ. 4, 278–306 (2015). CrossRefGoogle Scholar
  7. 7.
    Ohenoja, K., Körkkö, M., Wigren, V., Österbacka, J., Illikainen, M.: Fly ash classification efficiency of electrostatic precipitators in fluidized bed combustion of peat, wood, and forest residues. J. Environ. Manag. 206, 607–614 (2018). CrossRefGoogle Scholar
  8. 8.
    Ohenoja, K., Tanskanen, P., Peltosaari, O., Wigren, V., Österbacka, J., Illikainen, M.: Effect of particle size distribution on the self-hardening property of biomass-peat fly ash from a bubbling fluidized bed combustion. Fuel Process. Technol. 148, 60–66 (2016). CrossRefGoogle Scholar
  9. 9.
    Ohenoja, K., Tanskanen, P., Wigren, V., Kinnunen, P., Körkkö, M., Peltosaari, O., Österbacka, J., Illikainen, M.: Self-hardening of fly ashes from a bubbling fluidized bed combustion of peat, forest industry residuals, and wastes. Fuel. (2016). CrossRefGoogle Scholar
  10. 10.
    Barbosa, R., Lapa, N., Dias, D., Mendes, B.: Concretes containing biomass ashes: mechanical, chemical, and ecotoxic performances. Constr. Build. Mater. 48, 457–463 (2013). CrossRefGoogle Scholar
  11. 11.
    Berra, M., Mangialardi, T., Paolini, A.E.: Reuse of woody biomass fly ash in cement-based materials. Constr. Build. Mater. 76, 286–296 (2015). CrossRefGoogle Scholar
  12. 12.
    Cheah, C.B., Ramli, M.: The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: an overview. Resour. Conserv. Recycl. 55, 669–685 (2011). CrossRefGoogle Scholar
  13. 13.
    Cuenca, J., Rodríguez, J., Martín-Morales, M., Sánchez-Roldán, Z., Zamorano, M.: Effects of olive residue biomass fly ash as filler in self-compacting concrete. Constr. Build. Mater. 40, 702–709 (2013). CrossRefGoogle Scholar
  14. 14.
    Elinwa, A.U., Mahmood, Y.A.: Ash from timber waste as cement replacement material. Cem. Concr. Compos. 24, 219–222 (2002). CrossRefGoogle Scholar
  15. 15.
    Kaminskas, R., Cesnauskas, V.: Influence of activated biomass fly ash on portland cement hydration. Ceram. Silik. 58, 260–268 (2014)Google Scholar
  16. 16.
    Lessard, J.-M., Omran, A., Tagnit-Hamou, A., Gagné, R.: Production of RCC using biomass fly and bottom ashes: from laboratory to fieldwork. J. Mater. Civ. Eng. (2017). CrossRefGoogle Scholar
  17. 17.
    Rajamma, R., Senff, L., Ribeiro, M.J., Labrincha, J.A., Ball, R.J., Allen, G.C., Ferreira, V.M.: Biomass fly ash effect on fresh and hardened state properties of cement based materials. Compos. Part B Eng. 77, 1–9 (2015). CrossRefGoogle Scholar
  18. 18.
    Rajamma, R., Ball, R., Tarelho, L., Allen, G., Labrincha, J., Ferreira, V.: Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 172, 1049–1060 (2009)CrossRefGoogle Scholar
  19. 19.
    Ramos, T., Matos, A.M., Sousa-Coutinho, J.: Mortar with wood waste ash: mechanical strength carbonation resistance and ASR expansion. Constr. Build. Mater. 49, 343–351 (2013). CrossRefGoogle Scholar
  20. 20.
    Rissanen, J., Ohenoja, K., Kinnunen, P., Illikainen, M.: Partial replacement of Portland-composite cement by fluidized bed combustion fly ash. J. Mater. Civ. Eng. (2017). CrossRefGoogle Scholar
  21. 21.
    Sinsiri, T., Kroehong, W., Jaturapitakkul, C., Chindaprasirt, P.: Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Mater. Des. 42, 424–433 (2012). CrossRefGoogle Scholar
  22. 22.
    Teixeira, E.R., Mateus, R., Camões, A.F., Bragança, L., Branco, F.G.: Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J. Clean. Prod. 112(4), 2221–2230 (2016). CrossRefGoogle Scholar
  23. 23.
    Udoeyo, F.F., Inyang, H., Young, D.T., Oparadu, E.E.: Potential of wood waste ash as an additive in concrete. J. Mater. Civ. Eng. 18, 605–611 (2006). CrossRefGoogle Scholar
  24. 24.
    Udoeyo, F.F., Dashibil, P.U.: Sawdust ash as concrete material. J. Mater. Civ. Eng. 14, 173 (2002)CrossRefGoogle Scholar
  25. 25.
    Wang, S., Baxter, L., Fonseca, F.: Biomass fly ash in concrete: SEM, EDX and ESEM analysis. Fuel. 87, 372–379 (2008). CrossRefGoogle Scholar
  26. 26.
    ASTM, C.: 618-12a: Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. (2012)
  27. 27.
    SFS-EN: 450-1:en: Fly Ash for Concrete. Definition, Specifications and Conformity Criteria. British Standards Institution, London (2005)Google Scholar
  28. 28.
    Doudart de la Grée, G.C.H., Florea, M.V.A., Keulen, A., Brouwers, H.J.H.: Contaminated biomass fly ashes—characterization and treatment optimization for reuse as building materials. Waste Manag. 49, 96–109 (2016). CrossRefGoogle Scholar
  29. 29.
    Sarabèr, A.J.: Co-combustion and its impact on fly ash quality; full-scale experiments. Fuel Process. Technol. 128, 68–82 (2014). CrossRefGoogle Scholar
  30. 30.
    Wang, S.: Compressive strengths of mortar cubes from hydrated lime with cofired biomass fly ashes. Constr. Build. Mater. 50, 414–420 (2014). CrossRefGoogle Scholar
  31. 31.
    Wang, S., Llamazos, E., Baxter, L., Fonseca, F.: Durability of biomass fly ash concrete: freezing and thawing and rapid chloride permeability tests. Fuel. 87, 359–364 (2008). CrossRefGoogle Scholar
  32. 32.
    SFS-EN 451-1: Method of Testing Fly Ash- Part 1: Determination of Free Calcium Oxide. (2004)Google Scholar
  33. 33.
    EN 196-1: Methods of Testing Cement. Determination of Strength. (2016)Google Scholar
  34. 34.
    EN 1015-3: Methods of Test for Mortar for Masonry. Determination of Consistence of Fresh Mortar (by flow table). European Committee for Standardization (1999)Google Scholar
  35. 35.
    Demeyer, A., Voundi Nkana, J., Verloo, M.: Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour. Technol. 77, 287–295 (2001). CrossRefGoogle Scholar
  36. 36.
    Latva-Somppi, J., Moisio, M., Kauppinen, E.I., Valmari, T., Ahonen, P., Tapper, U., Keskinen, J.: Ash formation during fluidized-bed incineration of paper mill waste sludge. J. Aerosol Sci. 29, 461–480 (1998). CrossRefGoogle Scholar
  37. 37.
    Obernberger, I.: Decentralized biomass combustion: state of the art and future development. Biomass Bioenergy. 14, 33–56 (1998). CrossRefGoogle Scholar
  38. 38.
    Werkelin, J.: Ash forming elements and their chemical forms in woody biomass fuels, Ph. D. thesis, Abo Akademi (2008)Google Scholar
  39. 39.
    Steenari, B.-M., Lindqvist, O.: Fly ash characteristics in co-combustion of wood with coal, oil or peat. Fuel. 78, 479–488 (1999). CrossRefGoogle Scholar
  40. 40.
    Leiva, C., Vilches, L.F., Vale, J., Olivares, J., Fernández-Pereira, C.: Effect of carbonaceous matter contents on the fire resistance and mechanical properties of coal fly ash enriched mortars. Fuel. 87, 2977–2982 (2008). CrossRefGoogle Scholar
  41. 41.
    Atiş, C.D., Kiliç, A., Sevim, U.K.: Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash. Cem. Concr. Res. 34, 99–102 (2004). CrossRefGoogle Scholar
  42. 42.
    Papadakis, V.G.: Effect of fly ash on Portland cement systems: part II. High-calcium fly ash. Cem. Concr. Res. 30, 1647–1654 (2000). CrossRefGoogle Scholar
  43. 43.
    Kaewmanee, K., Krammart, P., Sumranwanich, T., Choktaweekarn, P., Tangtermsirikul, S.: Effect of free lime content on properties of cement–fly ash mixtures. Constr. Build. Mater. 38, 829–836 (2013). CrossRefGoogle Scholar
  44. 44.
    Junsomboon, J., Jakmunee, J.: Determination of potassium, sodium, and total alkalies in Portland cement, fly ash, admixtures, and water of concrete by a simple flow injection flame photometric system. (2011)
  45. 45.
    Cyr, M., Lawrence, P., Ringot, E.: Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cem. Concr. Res. 36, 264–277 (2006). CrossRefGoogle Scholar
  46. 46.
    Wang, A., Zhang, C., Sun, W.: Fly ash effects: I. The morphological effect of fly ash. Cem. Concr. Res. 33, 2023–2029 (2003). CrossRefGoogle Scholar
  47. 47.
    Illikainen, M., Tanskanen, P., Kinnunen, P., Körkkö, M., Peltosaari, O., Wigren, V., Österbacka, J., Talling, B., Niinimäki, J.: Reactivity and self-hardening of fly ash from the fluidized bed combustion of wood and peat. Fuel. 135, 69–75 (2014). CrossRefGoogle Scholar
  48. 48.
    Sheng, G., Li, Q., Zhai, J.: Investigation on the hydration of CFBC fly ash. Fuel. 98, 61–66 (2012). CrossRefGoogle Scholar
  49. 49.
    Kalla, P., Misra, A., Gupta, R.C., Csetenyi, L., Gahlot, V., Arora, A.: Mechanical and durability studies on concrete containing wollastonite–fly ash combination. Constr. Build. Mater. 40, 1142–1150 (2013). CrossRefGoogle Scholar
  50. 50.
    Brandštetr, J., Havlica, J., Odler, I.: Properties and use of solid residue from fluidized bed coal combustion. In: Chandra, S. (ed.) Waste Materials Used in Concrete Manufacturing, pp. 1–52. William Andrew Publishing, Westwood, NJ (1996)Google Scholar
  51. 51.
    Antoni, M., Rossen, J., Martirena, F., Scrivener, K.: Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 42, 1579–1589 (2012). CrossRefGoogle Scholar
  52. 52.
    Lanzerstorfer, C.: Cyclone fly ash from a grate-fired biomass combustion plant: Dependence of the concentration of various components on the particle size. Fuel Process. Technol. 131, 382–388 (2015). CrossRefGoogle Scholar
  53. 53.
    Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P.: The distribution of heavy metals during fluidized bed combustion of sludge (FBSC). J. Hazard. Mater. 151, 96–102 (2008). CrossRefGoogle Scholar
  54. 54.
    Orava, H., Nordman, T., Kuopanportti, H.: Increase the utilisation of fly ash with electrostatic precipitation. Miner. Eng. 19, 1596–1602 (2006). CrossRefGoogle Scholar
  55. 55.
    Zhang, T.-S., Yu, Q.-J., Wei, J.-X., Zhang, P.-P.: Effect of size fraction on composition and pozzolanic activity of high calcium fly ash. Adv. Cem. Res. 23, 299–307 (2011). CrossRefGoogle Scholar
  56. 56.
    Camerani, M.C., Steenari, B.-M., Sharma, R., Beckett, R.: Cd speciation in biomass fly ash particles after size separation by centrifugal SPLITT. Fuel. 81, 1739–1753 (2002). CrossRefGoogle Scholar
  57. 57.
    Itskos, G., Itskos, S., Koukouzas, N.: Size fraction characterization of highly-calcareous fly ash. Fuel Process. Technol. 91, 1558–1563 (2010). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fibre and Particle Engineering, Faculty of TechnologyUniversity of OuluOuluFinland
  2. 2.Renotech OyTurkuFinland
  3. 3.Fortum Waste Solutions OyRiihimäkiFinland

Personalised recommendations